Advertisement

Control Parameters Correlation by Multiple Linear Robust Regression for the Design of Heat Treatments For Al-6063 Alloy

  • J. Mayén
  • A. Gallegos-Melgar
  • V.H. Mercado-Lemus
  • M. Hernandez-Hernandez
  • A. Abúndez
  • E. Alcudia
  • I. Pereyra
  • S.A. Serna
  • C.A. Poblano-Salas
Article
  • 17 Downloads

Abstract

In this work, an alternative statistical multiple linear robust regression methodology was used to analyze the experimental data obtained from tensile tests performed on heat treated samples of an aluminium 6063 alloy. The proposed methodology allows the identification of empirical relations between the ageing temperature and process time with the mechanical strength (UTS) and yield point (YS) of the alloy. Through these empirical relationships: a) \( UTS=0.0932{T}_a{t}_A-0.1356{t}_A^2-0.0002434{T}_a^2{t}_A+0.00063{t}_A^3 \) and b) \( YS=5.10{T}_a-20.32{t}_A-0.05281{T}_a^2+0.2297{T}_a{t}_A+0.0001459{T}_a^3-0.0006192{T}_a^2{t}_A \), obtained by using the multiple linear robust regression methodology, it was possible to find that an ageing temperature of 192 °C for 120 min would produce the maximum strength levels for the Al-6063 alloy. For such alloy, empirical relationships were successfully determined for ageing heat treatment design.

Keywords

Aluminium alloys Mechanical properties Robust regression Heat treatments 

Notes

Acknowledgements

Funding provided by Cátedras CONACYT, by supporting researchers with the following ID numbers: 2309, 7360, 5150 and 6471 is greatly appreciated.

References

  1. 1.
    Maisonnette D, Suery M, Nelias D et al (2011) Effects of heat treatments on the microstructure and mechanical properties of a 6061 aluminium alloy. Mater Sci Eng A 528:2718–2724.  https://doi.org/10.1016/j.msea.2010.12.011 CrossRefGoogle Scholar
  2. 2.
    Peter I, Rosso M, Gobber FS (2015) Study of protective coatings for aluminum die casting molds. Appl Surf Sci 358:563–571.  https://doi.org/10.1016/j.apsusc.2015.08.013 CrossRefGoogle Scholar
  3. 3.
    Demir H, Gündüz S (2009) The effects of aging on machinability of 6061 aluminium alloy. Mater Des 30:1480–1483.  https://doi.org/10.1016/j.matdes.2008.08.007 CrossRefGoogle Scholar
  4. 4.
    Troeger LP, Starke EA Jr (2000) Microstructural and mechanical characterization of a superplastic 6xxx aluminum alloy. Mater Sci Eng A 277:102–113.  https://doi.org/10.1016/S0921-5093(99)00543-2 CrossRefGoogle Scholar
  5. 5.
    Buha J, Lumley RN, Crosky AG, Hono K (2007) Secondary precipitation in an Al-mg-Si-cu alloy. Acta Mater 55:3015–3024.  https://doi.org/10.1016/j.actamat.2007.01.006 CrossRefGoogle Scholar
  6. 6.
    Li H, Qingzhong M, Wang Z et al (2014) Simultaneously enhancing the tensile properties and intergranular corrosion resistance of Al-mg-Si-cu alloys by a thermo-mechanical treatment. Mater Sci Eng A 617:165–174.  https://doi.org/10.1016/j.msea.2014.08.045 CrossRefGoogle Scholar
  7. 7.
    Hirth SM, Marshall GJ, Court SA, Lloyd DJ (2001) Effects of Si on the aging behaviour and formability of aluminium alloys based on AA6016. Mater Sci Eng A 319–321:452–456.  https://doi.org/10.1016/S0921-5093(01)00969-8 CrossRefGoogle Scholar
  8. 8.
    Kim HH, Cho SH, Kang CG (2008) Evaluation of microstructure and mechanical properties by using nano/micro-indentation and nanoscratch during aging treatment of rheo-forged Al 6061 alloy. Mater Sci Eng A 485:272–281.  https://doi.org/10.1016/j.msea.2007.07.085 CrossRefGoogle Scholar
  9. 9.
    Abúndez A, Pereyra I, Campillo B et al (2016) Improvement of ultimate tensile strength by artificial ageing and retrogression treatment of aluminium alloy 6061. Mater Sci Eng A 668:201–207.  https://doi.org/10.1016/j.msea.2016.05.062 CrossRefGoogle Scholar
  10. 10.
    Becker WT, Shipley RJ (2002) ASM Metals Handbook Volume 11, Failure analysis and preventionGoogle Scholar
  11. 11.
    ASM International (1991) ASM Handbook Volume 04 - Heat TreatingGoogle Scholar
  12. 12.
    Maleque MA, Karim MR (2008) Tribological behavior of dual and triple particle size SiC reinforced Al-MMCs: a comparative study. Ind Lubr Tribol 60:189–194.  https://doi.org/10.1108/00368790810881533 CrossRefGoogle Scholar
  13. 13.
    Manasijevic S, Radisa R, Markovic S et al (2011) Thermal analysis and microscopic characterization of the piston alloy AlSi13Cu4Ni2Mg. Intermetallics 19:486–492.  https://doi.org/10.1016/j.intermet.2010.11.011 CrossRefGoogle Scholar
  14. 14.
    Al-Qutub AM, Allam IM, Abdul Samad MA (2008) Wear and friction of Al-Al2O3 composites at various sliding speeds. J Mater Sci 43:5797–5803.  https://doi.org/10.1007/s10853-008-2867-8 CrossRefGoogle Scholar
  15. 15.
    Koch GH, Kolijn DT (1979) The heat treatment of the commercial aluminum alloy 7075. J Heat Treat 1:3–14.  https://doi.org/10.1007/BF02833233 CrossRefGoogle Scholar
  16. 16.
    Siddiqui RA, Abdullah HA, Al-Belushi KR (2000) Influence of aging parameters on the mechanical properties of 6063 aluminium alloy. J Mater Process Technol 102:234–240CrossRefGoogle Scholar
  17. 17.
    Bourget JP, Fafard M, Shakeri HR, Côté T (2009) Optimization of heat treatment in cold-drawn 6063 aluminium tubes. J Mater Process Technol 209:5035–5041.  https://doi.org/10.1016/j.jmatprotec.2009.01.027 CrossRefGoogle Scholar
  18. 18.
    Taguchi G, Clausing D (1990) Robust quality. Harv Bus Rev 68:65–75Google Scholar
  19. 19.
    ASTM (2015) ASTM E8/E8M - 15a: Standard test methods for tension testing of metallic materialsGoogle Scholar
  20. 20.
    Taguchi G, Rafanelli AJ (1994) Taguchi on robust technology development: bringing quality engineering upstream. J Electron Packag 116:161CrossRefGoogle Scholar
  21. 21.
    Tansel IN, Gülmez S, Demetgul M, Aykut Ş (2011) Taguchi method-GONNS integration: complete procedure covering from experimental design to complex optimization. Expert Syst Appl 38:4780–4789.  https://doi.org/10.1016/j.eswa.2010.09.170 CrossRefGoogle Scholar
  22. 22.
    Liao H-C (2004) A data envelopment analysis method for optimizing multi-response problem with censored data in the Taguchi method. Comput Ind Eng 46:817–835.  https://doi.org/10.1016/j.cie.2004.05.012 CrossRefGoogle Scholar
  23. 23.
    Do KK, Han DN, Kim HT (2004) Optimization of experimental conditions based on the Taguchi robust design for the formation of nano-sized silver particles by chemical reduction method. Chem Eng J 104:55–61.  https://doi.org/10.1016/j.cej.2004.08.003 CrossRefGoogle Scholar
  24. 24.
    Taguchi G, Wu Y (1979) Introduction to off-line quality control. Central Japan Quality Control Assoc.Google Scholar
  25. 25.
    Andrews DF (1974) A robust method for multiple linear regression. Technometrics 16:523–531.  https://doi.org/10.1080/00401706.1974.10489233 CrossRefGoogle Scholar
  26. 26.
    Alma ÖG (2011) Comparison of robust regression methods in linear regression. Int J Contemp Math Sci 6:409–421Google Scholar
  27. 27.
    Motulsky HJ, Brown RE (2006) Detecting outliers when fitting data with nonlinear regression - a new method based on robust nonlinear regression and the false discovery rate. BMC Bioinformatics 7:123.  https://doi.org/10.1186/1471-2105-7-123 CrossRefGoogle Scholar
  28. 28.
    Pfeil WA (2006) Statistical Teaching AidsGoogle Scholar
  29. 29.
    Hubert M, Vandervieren E (2008) An adjusted boxplot for skewed distributions. Comput Stat Data Anal 52:5186–5201.  https://doi.org/10.1016/j.csda.2007.11.008 CrossRefGoogle Scholar
  30. 30.
    Ber LB (2000) Accelerated artificial ageing regimes of commercial aluminium alloys. II: Al-cu, Al-Zn-mg-(cu), Al-mg-Si-(cu) alloys. In: Mater Sci Eng A pp 91–96Google Scholar
  31. 31.
    Armao F (2011) Practical welding today. In: Pract. Weld. Today. http://www.thefabricator.com/article/aluminumwelding/achieving-t6-designation-for-6061
  32. 32.
    Hirsch J (1997) Aluminium alloys for automotive application. Mater Sci Forum 242:33–50.  https://doi.org/10.4028/www.scientific.net/MSF.242.33 CrossRefGoogle Scholar
  33. 33.
  34. 34.
    Hatch J.E. (1984) Aluminum properties and physical metallurgy. ASM ,Ohio, US 424.  https://doi.org/10.1361/appm1984p001
  35. 35.
    Qiang RG, Stiller V, Hansen A, Oskarsson FD (2002) No title. Forum MaterSci 396–402:1211–1216CrossRefGoogle Scholar
  36. 36.
    Cheng LM, Poole WJ, Embury JD, Lloyd DJ (2003) The influence of precipitation on the work-hardening behavior of the aluminum alloys AA6111 and AA7030. Metall Mater Trans A 34:2473–2481.  https://doi.org/10.1007/s11661-003-0007-2 CrossRefGoogle Scholar
  37. 37.
    Das G, Das M, Ghosh S et al (2010) Effect of aging on mechanical properties of 6063 Al-alloy using instrumented ball indentation technique. Mater Sci Eng A 527:1590–1594.  https://doi.org/10.1016/j.msea.2009.10.037 CrossRefGoogle Scholar
  38. 38.
    Jiang DM, Hong BD, Lei TC et al (1991) Influence of aging condition on tensile and fatigue fracture behaviour of aluminium alloy 6063. Mater Sci Technol 7:1010–1014CrossRefGoogle Scholar

Copyright information

© The Society for Experimental Mechanics, Inc 2018

Authors and Affiliations

  1. 1.CONACYT-CIATEQ, Unidad San Luis PotosíSan Luis PotosíMexico
  2. 2.CONACYT, Corporación Mexicana de Investigación en MaterialesSaltilloMexico
  3. 3.Tecnológico Nacional de México-Centro Nacional de Investigación y Desarrollo Tecnológico (CENIDET), Prolongación Palmira s/n esq. Apatzingán, Col. PalmiraCuernavacaMexico
  4. 4.CECyTE, Plantel XIISan Luis PotosíMexico
  5. 5.CIICAp-FCQeI-Universidad Autónoma del Estado de MorelosCuernavacaMexico
  6. 6.Centro de Tecnología Avanzada A.C., Procesos de ManufacturaEl MarquésMexico

Personalised recommendations