Experimental Techniques

, Volume 42, Issue 4, pp 355–369 | Cite as

Strengthening of Old Masonry Walls for out-of-Plane Seismic Loading with a CFRP Reinforced Render

  • J. GuerreiroEmail author
  • J. G. Ferreira
  • J. Proença
  • A. Gago


This paper presents part of the results of an experimental campaign for the development of a strengthening technique, aimed at retrofitting old buildings by the application of exterior reinforcing render layers to their masonry walls. The experimental campaign comprised tests with out-of-plane loading on both strengthened and non-strengthened masonry walls. The strengthening layer material, hereby designated as CFRP (Carbon Fibre Reinforced Polymer) reinforcing render, is an innovative material for the seismic retrofitting of masonry walls. The reinforcing render material consists of a lime-based mortar reinforced with a carbon fibre mesh, applied on one or both facings of a masonry wall. This solution was developed to provide the masonry wall with improved mechanical properties, while respecting the main principles for a proper rehabilitation of old buildings.


Masonry walls Seismic loading Out-of-plane behaviour Reinforced render CFRP 



The authors gratefully acknowledge STAP, S.A, promoter of the R&D project Rehab Toolbox, sponsored by FEDER through the POR Lisboa – QREN – Sistemas de Incentivos I&DT, for allowing the disclosure of the data presented in this paper.

The authors also gratefully acknowledge the participation of S&P, S.A in the same R&D project.

The authors would like to thank the Ministério da Ciência, Tecnologia e Ensino Superior (Ministry of Science, Technology and Higher Education), FCT, Portugal [grant number SFRH/BD/79339/2011].


  1. 1.
    Lagomarsino S, Brencich A, Bussolino F, Moretti A, Pagnini L, Podestà S (1997) Una nuova metodologia per il rilievo del danno alle chiese: prime considerazioni sui meccanismi attivati dal sisma. Ingegneria Sismica; No. 3Google Scholar
  2. 2.
    Binda L, Gambarotta L, Lagomarsino S, Modena C (1999) A multilevel approach to the damage assessment and seismic improvement of masonry buildings in Italy. CRC press / Balkema; seismic damage to masonry buildings; Rotterdam, The NetherlandsGoogle Scholar
  3. 3.
    Borri A, Avorio A, Cangi G (1999) Considerazioni sui cinematismi di collasso osservati per edifici in muratura. IX Convegno Nazionale “L’ingegneria Sismica in Italia”, ANIDIS; Turin, ItalyGoogle Scholar
  4. 4.
    D’Ayala D (1999) Correlation of seismic vulnerability and damages between classes of buildings: churches and houses, in seismic damage to masonry buildings. CRC press / Balkema; seismic damage to masonry buildings; Rotterdam, The NetherlandsGoogle Scholar
  5. 5.
    Giuffrè A (1993) Sicurezza e conservazione dei centri storici in area sismica, il caso Ortigia. Editora Laterza; BariGoogle Scholar
  6. 6.
    Doglioni F, Moretti A, Petrini V (1994) Le chiese ed il terremoto. Editoriale Lint; TriesteGoogle Scholar
  7. 7.
    Binda L, Baronio G, Gambarotta L, Lagomarsino S, Modena C (1999) Masonry constructions in seismic areas of central Italy: a multi-level approach to conservation. VIII north American masonry conference - 8NAMC; AustinGoogle Scholar
  8. 8.
    D'Ayala D, Speranza E. (1999) Identificazione dei meccanismi di collasso per la stima della vulnerabilità sismica di edifici nei centri storici. IX Convegno Nazionale “L’ingegneria Sismica in Italia”, ANIDIS; TurinGoogle Scholar
  9. 9.
    Zuccaro G, Papa F. (2003) CD Multimediale MEDEA - Manuale di Esercitazioni sul Danno Ed Agibilità per edifici ordinari in muratura. Dipartimento Protezione Civile; RomeGoogle Scholar
  10. 10.
    Borri A, Cangi G (2004) Vulnerabilità ed interventi di prevenzione sismica nei centri storici umbri dell’alta Val Tiberina. XI Congresso Nazionale “L’ingegneria Sismica in Italia”, ANIDIS; GenoaGoogle Scholar
  11. 11.
    Doglioni F (1999) Codice di pratica (linee guida) per la progettazione degli interventi di riparazione, miglioramento sismico e restauro dei beni architettonici danneggiati dal terremoto umbro-marchigiano del 1997. Bollettino Ufficiale della Regione MarcheGoogle Scholar
  12. 12.
    Costa A, Penna A, Arêde A, Costa A (2015) Simulation of masonry out-of-plane failure modes by multi-body dynamics. Earthq Eng Struct Dyn.
  13. 13.
    Ferreira T, Costa A, Arêde A, Varum H, Costa A (2016) In-situ out-of-plane testing of original and strengthened traditional stone masonry walls using airbags. J Earthq Eng 20:749–772. CrossRefGoogle Scholar
  14. 14.
    Poletti E, Vasconcelos G, Jorge M (2015) Application of near surface mounted (NSM) strengthening technique to traditional timber frame walls. Constr Build Mater 76:34–50. CrossRefGoogle Scholar
  15. 15.
    Ferreira J, Teixeira M, Dutu A, Branco F, Gonçalves M (2012) Experimental Evaluation and Numerical modelling of timber-framed walls. Exp Tech 38:45–53. CrossRefGoogle Scholar
  16. 16.
    Binda L, Anzani A, Cantini L, Cardani G, Tedeschi C, Saisi A (2006) On site and laboratory investigation on some churches hit by a recent earthquakes, in Order to assess the damages to materials and structures. I international conference on restoration of heritage masonry structures; CairoGoogle Scholar
  17. 17.
    Avorio A, Borri A, De Maria A (2002) Sisma umbro-marchigiano del settembre 1997 e successivi a Sellano: comportamento di una schiera di edifici consolidati. Ingegneria Sismica 2:54–71Google Scholar
  18. 18.
    Drei A, Milani G, Sincraian G (2017) DEM numerical approach for masonry aqueducts in seismic zone: two valuable Portuguese examples. Int J Masonry Res Innov 1(2).
  19. 19.
    Dutu A, Ferreira J, Sandu C (2013) Incremental seismic rehabilitation concept for Romanian civil buildings integrated in natural hazards prevention management. Int J Emerg Manag 9(3):248–257. CrossRefGoogle Scholar
  20. 20.
    Ismail A, Ingham J (2016) In-plane and out-of-plane testing of unreinforced masonry walls strengthened using polymer textile reinforced mortar. Eng Struct 118:167–177. CrossRefGoogle Scholar
  21. 21.
    Guerreiro J, Proença M, Ferreira J, Gago A. (2017) Bonding and anchoring of a CFRP reinforced render for external strengthening of old masonry buildings. Construction and Building Materials. Under reviewGoogle Scholar
  22. 22.
    Colen I, Brito J, Branco F (2008) Situ adherence evaluation of coating materials. Exp Tech 33:51–60. CrossRefGoogle Scholar
  23. 23.
    Giaretton M, Dizhur D, Porto F, Ingham Z (2015) Constituent material properties of New Zealand unreinforced stone masonry buildings. J Building Eng 4:75–85. CrossRefGoogle Scholar
  24. 24.
    Gago A, Proença A, Cardoso J, Cóias V, Paula R (2009) Seismic strengthening of stone masonry walls with glass fiber reinforced polymer strips and mechanical anchorages. Exp Tech 35:45–53. CrossRefGoogle Scholar
  25. 25.
    EN 12390:3. (2009) Testing hardened concrete; Part 3: Compressive strength of test specimensGoogle Scholar
  26. 26.
    EN 206:1. (2000) Concrete. Specification, performance, production and conformityGoogle Scholar
  27. 27.
    EN 12390:13. (2013) Testing hardened concrete. Part 13: Determination of secant modulus of elasticity in compressionGoogle Scholar
  28. 28.
    ASTM E2126:05. (2005) Standard Test Methods for Cyclic (Reversed) Load Test for Shear Resistance of Walls for BuildingsGoogle Scholar
  29. 29.
    Gonçalves AM, Gomes-Ferreira J, Guerreiro L, Branco F (2014) Seismic retrofitting of timber framed walls. Mater Constr 64(316):e040. CrossRefGoogle Scholar

Copyright information

© The Society for Experimental Mechanics, Inc 2018

Authors and Affiliations

  • J. Guerreiro
    • 1
    Email author
  • J. G. Ferreira
    • 1
  • J. Proença
    • 1
  • A. Gago
    • 1
  1. 1.Universidade de Lisboa Instituto Superior TecnicoLisbonPortugal

Personalised recommendations