Current Stem Cell Reports

, Volume 5, Issue 3, pp 115–124 | Cite as

Human Hematopoietic Stem Cells: Concepts and Perspectives on the Biology and Use of Fresh Versus In Vitro–Generated Cells for Therapeutic Applications

  • Hector MayaniEmail author
Artificial Tissues (A Atala and J Hunsberger, Section Editors)
Part of the following topical collections:
  1. Topical Collection on Artificial Tissues


Purpose of Review

The in vitro production of human hematopoietic stem cells (hHSCs) has caused great interest due to its clinical impact. The main goal of the present article is to review the information existing today on the in vitro generation of hHSCs and their molecular and functional integrity as compared with fresh hHSCs.

Recent Findings

By using different in vitro systems, hHSCs have been generated from fresh hHSCs (obtained from bone marrow, peripheral blood, or cord blood) and from pluripotent stem cells. Although functional and molecular gaps have been observed between fresh and in vitro–derived hHSCs, recent clinical trials indicate that hHSCs generated in vitro from cord blood are capable of long-term hematopoietic reconstitution in transplanted patients. To date, no data exist on the clinical use of hHSCs derived from human pluripotent stem cells (hPSCs).


Significant achievements in hHSC expansion and manipulation, as well as in the culture and differentiation of hPSCs, have been reported. All this, together with innovative clinical trials for the treatment of hematologic disorders, will be fundamental for the in vitro generation of hHSCs and their application in clinical settings.


Cord blood Cytokines Embryonic stem cells Expansion Hematopoietic stem cells In vitro Pluripotent stem cells Reprogramming 



Research in HM’s lab has been supported by the Mexican Institute of Social Security (IMSS) and the National Council of Science and Technology, Mexico (CONACYT).

Compliance with Ethical Standards

Conflict of Interest

The author declares that he has no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.


Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Dahlberg A, Delaney C, Bernstein ID. Ex vivo expansion of human hematopoietic stem and progenitor cells. Blood. 2011;117:6083–90.CrossRefGoogle Scholar
  2. 2.
    Flores-Guzman P, Fernandez-Sanchez V, Mayani H. Concise review: ex vivo expansion of cord blood-derived hematopoietic stem and progenitor cells: basic principles, experimental approaches, and impact in regenerative medicine. Stem Cells Transl Med. 2013;2:830–8.CrossRefGoogle Scholar
  3. 3.
    Baron F, Ruggeri A, Nagler A. Methods of ex vivo expansion of human cord blood cells: challenges, successes, and clinical implications. Expert Rev Hematol. 2016;9:297–314.CrossRefGoogle Scholar
  4. 4.
    • Blaser BW, Zon LI. Making HSCs in vitro: don’t forget the hemogenic endothelium. Blood. 2018;132:1372–8 Recent review article on the generation of HSCs from PSCs. CrossRefGoogle Scholar
  5. 5.
    Ivanovs A, Rybtsov S, Ng ES, Stanley EG, Elefanty AG, Medvinsky A. Human haematopoietic stem cell development: from the embryo to the dish. Development. 2017;144:2323–37.CrossRefGoogle Scholar
  6. 6.
    Boulais PE, Frenette PS. Making sense of hematopoietic stem cell niches. Blood. 2015;125:2621–9.CrossRefGoogle Scholar
  7. 7.
    Doulatov S, Notta F, Laurenti E, Dick JE. Hematopoiesis: a human perspective. Cell Stem Cell. 2012;10:120–36.CrossRefGoogle Scholar
  8. 8.
    • Eaves CJ. Hematopoietic stem cells: concepts, definitions and the new reality. Blood. 2015;125:2605–13 Excellent review article on the biology of HSCs. CrossRefGoogle Scholar
  9. 9.
    Mayani H. The regulation of hematopoietic stem cell populations. F1000Research. 2016;5:1524.CrossRefGoogle Scholar
  10. 10.
    Szilvassy SJ. The biology of hematopoietic stem cells. Arch Med Res. 2003;34:446–60.CrossRefGoogle Scholar
  11. 11.
    Bhatia M, Bonnet D, Murdoch B, Gan OI, Dick JE. A newly discovered class of human hematopoietic cells with SCID-repopulating activity. Nat Med. 1998;4:1038–45.CrossRefGoogle Scholar
  12. 12.
    Anjos-Afonso F, Currie E, Palmer HG, Foster KE, Taussig DC, Bonnet D. CD34(−) cells at the apex of the human hematopoietic stem cell hierarchy have distinctive cellular and molecular signatures. Cell Stem Cell. 2013;13:161–74.CrossRefGoogle Scholar
  13. 13.
    Ito M, Hiramatsu H, Kobayashi K, Suzue K, Kawahata M, Hioki K, et al. NOD/SCID/γcnull mouse: an excellent recipient mouse model for engraftment of human cells. Blood. 2002;100:3175–82.CrossRefGoogle Scholar
  14. 14.
    Laiosa MD. Functional assays of hematopoietic stem cells in toxicology research. Methods Mol Biol. 1803;2018:317–33.Google Scholar
  15. 15.
    Balassa K, Danby R, Rocha V. Haematopoietic stem cell transplants: principles and indications. Br J Hosp Med. 2019;80:33–9.CrossRefGoogle Scholar
  16. 16.
    Barnes DWH, Corp MJ, Loutit JF, Neal FE. Treatment of murine leukaemia with X-rays and homologous bone marrow. Preliminary communication. Br Med J. 1956;2:626–7.CrossRefGoogle Scholar
  17. 17.
    Baron F, Storb R, Little MT. Hematopoietic cell transplantation: five decades of progress. Arch Med Res. 2003;34:528–44.CrossRefGoogle Scholar
  18. 18.
    Gyurkocza B, Rezvani A, Storb RF. Allogeneic hematopoietic cell transplantation: state of the art. Expert Rev Hematol. 2010;3:285–99.CrossRefGoogle Scholar
  19. 19.
    Perales MA, Sauter CS, Armand P. Fast cars and no brakes: autologous stem cell transplantation as a platform for novel immunotherapies. Biol blood Marrow Transplant. 2016;22:17–22.CrossRefGoogle Scholar
  20. 20.
    Panch SR, Szymanski J, Savani BN, Stroncek DF. Sources of hematopoietic stem and progenitor cells and methods to optimize yields for clinical cell therapy. Biol Blood Marrow Transplant. 2017;23:1241–9.CrossRefGoogle Scholar
  21. 21.
    Burns LJ, Logan BR, Chitphakdithai P, Miller JP, Drexler R, Spellman S, et al. Recovery of unrelated donors of peripheral blood stem cells versus recovery of unrelated donors of bone marrow: a prespecified analysis from the phase III Blood and Marrow Transplant Clinical Trials Network protocol 0201. Biol Blood Marrow Transplant. 2016;22:1108–16.CrossRefGoogle Scholar
  22. 22.
    Mayani H. Umbilical cord blood: lessons learned and lingering challenges after more than 20 years of basic and clinical research. Arch Med Res. 2011;42:645–51.CrossRefGoogle Scholar
  23. 23.
    Mayani H. Biological differences between neonatal and adult human hematopoietic stem/progenitor cells. Stem Cells Dev. 2010;19:285–98.CrossRefGoogle Scholar
  24. 24.
    • Broxmeyer HE, Lee MR, Hangoc G, Cooper S, Prasain N, Kim YJ, et al. Hematopoietic stem/progenitor cells, generation of induced pluripotent stem cells, and isolation of endothelial progenitors from 21- to 23.5-year cryopreserved cord blood. Blood. 2011;117:4773–7 Original study showing the functional integrity of human cord blood cells after more than 20 years of cryopreservation. CrossRefGoogle Scholar
  25. 25.
    Mayani H, Wagner JE, Broxmeyer HE. Cord blood research, banking and transplantation: achievements, challenges and perspectives. Bone Marrow Transplant. 2019.Google Scholar
  26. 26.
    Smith AR, Wagner JE. Alternative haematopoietic stem cell sources for transplantation: place of umbilical cord blood. Br J Haematol. 2009;147:246–61.CrossRefGoogle Scholar
  27. 27.
    Ooi J. Cord blood transplantation in adults. Bone Marrow Transplant. 2009;44:661–6.CrossRefGoogle Scholar
  28. 28.
    Mayani H, Lansdorp PM. Biology of human cord blood-derived hematopoietic/stem progenitor cells. Stem Cells. 1998;16:153–65.CrossRefGoogle Scholar
  29. 29.
    Flores-Guzman P, Fernandez-Sanchez V, Valencia-Plata I, Arriaga-Pizano L, Alarcón-Santos G, Mayani H. Comparative in vitro analysis of different hematopoietic cell populations from human cord blood: in search of the best option for clinically-oriented ex vivo cell expansion. Transfusion. 2013;53:668–78.CrossRefGoogle Scholar
  30. 30.
    Metcalf D. Hematopoietic cytokines. Blood. 2008;111:485–91.CrossRefGoogle Scholar
  31. 31.
    Szilvassy SJ. Early-acting hematopoietic growth factors: biology and clinical experience. Cancer Treat Res. 2011;157:11–31.CrossRefGoogle Scholar
  32. 32.
    Kaimakis P, Crisan M, Dzierzak E. The biochemistry of hematopoietic stem cell development. Biochim Biophys Acta. 1830;2013:2395–403.Google Scholar
  33. 33.
    •• Pinho S, Frenette PS. Haematopoietic stem cell activity and interactions with the niche. Nat Rev Mol Cell Biol. 2019. Excellent recent review on the biology of the hematopoietic niche.
  34. 34.
    Rosler E, Brandt J, Chute J, Hoffman R. Cocultivation of umbilical cord blood cells with endothelial cells leads to extensive amplification of competent CD34+ CD38 cells. Exp Hematol. 2000;28:841–52.CrossRefGoogle Scholar
  35. 35.
    Fei XM, Wu YJ, Chang Z, Miao KR, Tang YH, Zhou XY, et al. Co-culture of cord blood CD34+ cells with human BM mesenchymal stromal cells enhances short-term engraftment of cord blood cells in NOD/SCID mice. Cytotherapy. 2007;9:338–47.CrossRefGoogle Scholar
  36. 36.
    Flores-Guzman P, Flores-Figueroa E, Montesinos JJ, Martinez-Jaramillo G, Fernandez-Sanchez V, Valencia-Plata I, et al. Individual and combined effects of mesenchymal stromal cells and recombinant stimulatory cytokines on the in vitro growth of primitive hematopoietic cells from human umbilical cord blood. Cytotherapy. 2009;11:886–96.CrossRefGoogle Scholar
  37. 37.
    Kirouac DC, Madlambayan GJ, Yu M, Sykes EA, Ito C, Zandstra PW. Cell-cell interaction networks regulate blood stem and progenitor cell fate. Mol Syst Biol. 2009;5:293.CrossRefGoogle Scholar
  38. 38.
    Lewis ID, Almeida-Porada G, Du J, Lemischka IR, Moore KA, Zanjani ES, et al. Umbilical cord blood cells capable of engrafting in primary, secondary, and tertiary xenogeneic hosts are preserved after ex vivo culture in a noncontact system. Blood. 2001;97:3441–9.CrossRefGoogle Scholar
  39. 39.
    Fernandez-Sanchez V, Pelayo R, Flores-Guzman P, Flores-Figueroa E, Villanueva-Toledo J, Garrido E, et al. In vitro effects of stromal cells expressing different levels of Jagged-1 and Delta-1 on the growth of primitive and intermediate CD34+ cell subsets from human cord blood. Blood Cells Mol Dis. 2011;47:205–13.CrossRefGoogle Scholar
  40. 40.
    Peled T, Mandel J, Goudsmid RN, Landor C, Hasson N, Harati D, et al. Pre-clinical development of cord blood-derived progenitor cell graft expanded ex vivo with cytokines and the polyamine copper chelator tetraethylenepentamine. Cytotherapy. 2004;6:244–55.CrossRefGoogle Scholar
  41. 41.
    • Delaney C, Heimfeld S, Brashem-Stein C, Voorhies H, Manger RL, Bernstein ID. Notch-mediated expansion of human cord blood progenitor cells capable of rapid myeloid reconstitution. Nat Med. 2010;16:232–6 First clinical trial using cord blood cells expanded with DL1 and showing promising results. CrossRefGoogle Scholar
  42. 42.
    Peled T, Shoham H, Aschengrau D, Yackoubov D, Frei G, Rosenheimer GN, et al. Nicotinamide, a SIRT1 inhibitor, inhibits differentiation and facilitates expansion of hematopoietic progenitor cells with enhanced bone marrow homing and engraftment. Exp Hematol. 2012;40:342–55.CrossRefGoogle Scholar
  43. 43.
    Boitano AE, Wang J, Romeo R, Bouchez LC, Parker AE, Sutton SE, et al. Aryl hydrocarbon receptor antagonists promote the expansion of human hematopoietic stem cells. Science. 2010;329:1345–8.CrossRefGoogle Scholar
  44. 44.
    Fares I, Chagraoui J, Gareau Y, Gingras S, Ruel R, Mayotte N, et al. Pyrimidoindole derivatives are agonists of human hematopoietic stem cell self-renewal. Science. 2014;345:1509–12.CrossRefGoogle Scholar
  45. 45.
    Huang X, Lee MR, Cooper S, Hangoc G, Hong KS, Chung HM, et al. Activation of OCT4 enhances ex vivo expansion of human cord blood hematopoietic stem and progenitor cells by regulating HOXB4 expression. Leukemia. 2015;30:144–53.CrossRefGoogle Scholar
  46. 46.
    Guo B, Huang X, Lee MR, Lee SA, Broxmeyer HE. Antagonism of PPAR-γ signaling expands hematopoietic stem and progenitor cells by enhancing glycolysis. Nat Med. 2018;24:360–7.CrossRefGoogle Scholar
  47. 47.
    Chaurasia P, Gajzer DC, Schaniel C, D’Souza S, Hoffman R. Epigenetic reprogramming induces the expansion of cord blood stem cells. J Clin Invest. 2014;124:2378–95.CrossRefGoogle Scholar
  48. 48.
    Shpall EJ, Quinones R, Giller R, Zeng C, Baron AE, Jones RB, et al. Transplantation of ex vivo expanded cord blood. Biol Bone Marrow Transplant. 2002;8:368–76.CrossRefGoogle Scholar
  49. 49.
    Jaroscak J, Goltry K, Smith A, Waters-Pick B, Martin PL, Driscoll TA, et al. Augmentation of umbilical cord blood (UCB) transplantation with ex vivo-expanded UCB cells: results of a phase I trial using the AastromReplicell System. Blood. 2003;101:5061–7.CrossRefGoogle Scholar
  50. 50.
    De Lima M, McMannis J, Gee A, Komanduri K, Couriel D, Andersson BS, et al. Transplantation of ex vivo expanded cord blood cells using the copper chelator tertraethylenepentamine: a phase I/II clinical trial. Bone Marrow Transplant. 2008;41:771–8.CrossRefGoogle Scholar
  51. 51.
    De Lima M, McNiece I, Robinson SN, Munsell M, Eapen M, Horowitz M, et al. Cord-blood engraftment with ex vivo mesenchymal-cell coculture. New Engl J Med. 2012;367:2305–15.CrossRefGoogle Scholar
  52. 52.
    Horwitz ME, Chao NJ, Rizzieri DA, Long GD, Sullivan KM, Gasparetto C, et al. Umbilical cord blood expansion with nicotinamide provides long-term multilineage engraftment. J Clin Invest. 2014;124:3121–8.CrossRefGoogle Scholar
  53. 53.
    Wagner JE, Brunstein CG, Boitano AE, DeFor TE, McKenna D, Sumstad D, et al. Phase I/II trial of StemRegenin-1 expanded umbilical cord blood hematopoietic stem cells supports testing as a stand-alone graft. Cell Stem Cell. 2016;18:144–55.CrossRefGoogle Scholar
  54. 54.
    Nichols J, Smith A. Naïve and primed pluripotent states. Cell Stem Cell. 2009;4:487–92.CrossRefGoogle Scholar
  55. 55.
    Dakhore S, Nayer B, Hasegawa K. Human pluripotent stem cell culture: current status, challenges, and advancement. Stem Cells Int. 2018;2018:1–17. Scholar
  56. 56.
    • Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshal VS, et al. Embryonic stem cell lines derived from human blastocysts. Science. 1998;282:1145–7 Pioneer work on the derivation of human pluripotent stem cell lines. CrossRefGoogle Scholar
  57. 57.
    •• Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126:663–76 Original study on the development of induced pluripotent stem cells. CrossRefGoogle Scholar
  58. 58.
    Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007;131:861–72.CrossRefGoogle Scholar
  59. 59.
    Lim WF, Inoue-Yokoo T, Tan KS, Lai MI, Sugiyama D. Hematopoietic cell differentiation from embryonic and induced pluripotent stem cells. Stem Cell Res Ther. 2013;4:71.Google Scholar
  60. 60.
    Kennedy M, D’Souza SL, Lynch-Kattman M, Schwantz S, Keller G. Development of the hemangioblast defines the onset of hematopoiesis in human ES cell differentiation cultures. Blood. 2007;109:2679–87.Google Scholar
  61. 61.
    Chadwick K, Wang L, Li L, Menendez P, Murdock B, Rouleau A, et al. Cytokines and BMP-4 promote hematopoietic differentiation of human embryonic stem cells. Blood. 2003;102:906–15.CrossRefGoogle Scholar
  62. 62.
    Lengerke C, Grauer M, Niebuhr NI, Riedt T, Kanz L, Park I-H, et al. Hematopoietic development from human induced pluripotent stem cells. Ann N Y Acad Sci. 2009;1176:219–27.CrossRefGoogle Scholar
  63. 63.
    Choi KD, Yu J, Smuga-Otto K, Salvagiotto G, Rehrauer W, Vodyanik M, et al. Hematopoietic and endothelial differentiation of human induced pluripotent stem cells. Stem Cells. 2009;27:559–67.CrossRefGoogle Scholar
  64. 64.
    Mao B, Huang S, Lu X, Sun W, Zhou Y, Pan X, et al. Early development of definitive erythroblasts from human pluripotent stem cells defined by expression of glycophorin A/CD235a, CD34, and CD36. Stem Cell Reports. 2016;7:869–83.CrossRefGoogle Scholar
  65. 65.
    Ma F, Ebihara Y, Umeda K, Sakai H, Hanada S, Zhang H, et al. Generation of functional erythrocytes from human embryonic stem cell-derived definitive hematopoiesis. Proc Natl Acad Sci. 2008;105:13087–92.CrossRefGoogle Scholar
  66. 66.
    Salvagiotto G, Burton S, Daigh CA, Rajesh D, Slukvin II, Seay NJ. A defined, feeder-free, serum-free system to generate in vitro hematopoietic progenitors and differentiated blood cells from hESCs and hiPSCs. PlosOne. 2011;6:e17829.CrossRefGoogle Scholar
  67. 67.
    Doulatov S, Vo LT, Chou SS, Kim PG, Arora N, Li H, et al. Induction of multipotential hematopoietic progenitors from human pluripotent stem cells via respecification of lineage-restricted precursors. Cell Stem Cell. 2013;13:459–70.CrossRefGoogle Scholar
  68. 68.
    •• Sugimura R, Jha DK, Han A, Soria-Valles C, Lummertz da Rocha E, Lu Y-F, et al. Haematopoietic stem and progenitor cells from human pluripotent stem cells. Nature. 2017;545:432–8 Generation of hHSCs from hPSCs via hemogenic endothelium. CrossRefGoogle Scholar
  69. 69.
    •• Sandler VM, Lis R, Liu Y, Kedem A, James D, Elemento O, et al. Reprogramming human endothelial to hematopoietic cells requires vascular induction. Nature. 2014;511:312–8 Reprogramming of human endothelial cells into engraftable hematopoietic cells without transition into a pluripotent intermediate. Google Scholar
  70. 70.
    Dorrell C, Gan OI, Pereira DS, Hawley RG, Dick JE. Expansion of human cord blood CD34+ CD38- cells in ex vivo culture during retroviral transduction without a corresponding increase in SCID-repopulating cell (SRC) frequency: dissociation of SCR phenotype and function. Blood. 2000;95:102–10.Google Scholar
  71. 71.
    Douay L. Experimental culture conditions are critical for ex vivo expansion of hematopoietic cells. J Hematother Stem Cell Res. 2001;10:341–6.CrossRefGoogle Scholar
  72. 72.
    McKenzie JL, Gan OI, Doedens M, Dick JE. Reversible cell surface expression of CD38 on CD34-positive human hematopoietic repopulating cells. Exp Hematol. 2007;35:1429–36.CrossRefGoogle Scholar
  73. 73.
    Danet GH, Lee HW, Luongo JL, Simon MC, Bonnet DA. Dissociation between stem cell phenotype and NOD/SCID repopulating activity in human peripheral blood CD34+ cells after ex vivo expansion. Exp Hematol. 2001;29:1465–73.CrossRefGoogle Scholar
  74. 74.
    Kiernan J, Damien P, Monaghan M, Shorr R, McIntyre L, Fergusson D, et al. Clinical studies of ex vivo expansion to accelerate engraftment after umbilical cord blood transplantation: a systematic review. Trans Med Rev. 2017;31:173–82.CrossRefGoogle Scholar
  75. 75.
    • Dircio-Maldonado R, Flores-Guzmán P, Corral-Navarro J, Mondragón-García I, Hidalgo-Miranda A, Beltrán-Anaya FO, et al. Functional integrity and gene expression profiles of human cord blood-derived hematopoietic stem and progenitor cells generated in vitro. Stem Cells Transl Med. 2018;7:602–14 Study demonstrating that in vitro–generated hHSCs differ molecularly and functionally from bona fide hHSCs obtained directly from UCB. CrossRefGoogle Scholar
  76. 76.
    •• Horwitz ME, Wease S, Blackwell B, Valcarcel D, Frassoni F, Boelens JJ, et al. Phase I/II study of stem-cell transplantation using a single cord blood unit expanded ex vivo with nicotinamide. J Clin Oncol. 2019;37:367–74 First clinical trial using expanded cord blood cells as a stand-alone graft. CrossRefGoogle Scholar
  77. 77.
    Anasetti C, Logan BR, Lee SJ, Waller EK, Weisdorf DJ, Wingard JR, et al. Peripheral blood stem cells versus bone marrow from unrelated donors. N Engl J Med. 2012;367:1487–96.CrossRefGoogle Scholar
  78. 78.
    Henry MP, Hawkins JR, Boyle J, Bridger JM. The genomic health of human pluripotent stem cells: genomic instability and the consequences on nuclear organization. Front Genet. 2019;9:623. Scholar
  79. 79.
    Csaszar E, Kirouac DC, Yu M, Wang WJ, Qiao W, Cooke MP, et al. Rapid expansion of human hematopoietic stem cells by automated control of inhibitory feedback signaling. Cell Stem Cell. 2012;10:218–29.CrossRefGoogle Scholar
  80. 80.
    Bourgine PE, Klein T, Paczulla AM, Shimizu T, Kunz L, Kokkaliaris KD, et al. In vitro biomimetic engineering of a human hematopoietic niche with functional properties. Proc Natl Acad Sci U S A. 2018;115:5688–95.CrossRefGoogle Scholar
  81. 81.
    Mokhtari S, Baptista PM, Vyas DA, Freeman CJ, Moran E, Brovold M, et al. Evaluating interaction of cord blood hematopoietic stem/progenitor cells with functionally integrated three-dimensional microenvironments. Stem Cells Transl Med. 2018;7:271–82.CrossRefGoogle Scholar
  82. 82.
    Kumar D, Cain SA, Bosworth LA. Effect of topography and physical stimulus on hMSC phenotype using a 3D in vitro model. Nanomaterials. 2019;9:522.CrossRefGoogle Scholar
  83. 83.
    Mejía-Cruz CC, Barreto-Durán E, Pardo-Pérez MA, Jimenez MC, Rincón J, Vanegas K, et al. Generation of organotypic multicelular spheres by magnetic levitation: model for the study of human hematopoietic stem cells microenvironment. Int J Stem Cells. 2019;12:51–62.CrossRefGoogle Scholar
  84. 84.
    Guo J, Zhao C, Yao R, Sui A, Sun L, Liu X, et al. 3D culture enhances chemoresistance of ALL Jurkat cell line by increasing DDR1 expression. Exp Therap Med. 2019;17:1593–600.Google Scholar
  85. 85.
    Tan J, Liu T, Hou L, Meng W, Zhi W, Deng L. Maintenance and expansion of hematopoietic stem/progenitor cells in biomimetic osteoblast niche. Cytotechnology. 2010;62:439–48.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Oncology Research Unit, Oncology Hospital, National Medical CenterMexican Institute of Social SecurityMexico CityMexico

Personalised recommendations