Advertisement

Induced Pluripotent Stem Cell-Derived Red Blood Cells, Megakaryocytes, and Platelets: Progress and Challenges

  • Hyun Hyung An
  • Mortimer Poncz
  • Stella T. Chou
Cellular Therapies: Preclinical and Clinical (EM Horwitz, Section Editor)
  • 1 Downloads
Part of the following topical collections:
  1. Topical Collection on Cellular Therapies: Preclinical and Clinical

Abstract

Purpose of Review

Human induced pluripotent stem cells (iPSCs) represent an attractive source to generate in vitro-derived red blood cells, megakaryocytes, and platelets for transfusion support. We review the progress made and challenges remaining for generating terminally differentiated red cells and platelets suitable for clinical application.

Recent Findings

Human iPSC hematopoietic differentiation protocols primarily recapitulate the primitive stage of hematopoiesis, but a different hematopoietic progenitor that mimics the second wave of hematopoiesis has been identified that generates definitive blood cells. Coupled with strategies to improve maturation and expansion, this provides new opportunities to generate red cells and platelets that can mature, enucleate, and proliferate to clinical scale.

Summary

The major challenges of human iPSC-derived transfusion products are terminal differentiation and scalability. Despite these challenges, iPSCs offer a new source for unlimited generation of red cells and platelets with rare phenotypes for transfusion, blood bank reagents, and novel drug delivery systems.

Keywords

Induced pluripotent stem cells Red blood cells Megakaryocytes Platelets In vitro-derived blood cells Transfusion 

Notes

Compliance with Ethical Standards

Conflict of Interest

Stella T. Chou reports grants from National Institutes of Health, during the conduct of the study. Hyun Hyung An and Mortimer Poncz declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References

Papers of particular interest, published recently, have been highlighted as: •• Of major importance

  1. 1.
    Kennedy M, Awong G, Sturgeon CM, Ditadi A, LaMotte-Mohs R, Zuniga-Pflucker JC, et al. T lymphocyte potential marks the emergence of definitive hematopoietic progenitors in human pluripotent stem cell differentiation cultures. Cell Rep. 2012;2(6):1722–35.  https://doi.org/10.1016/j.celrep.2012.11.003.CrossRefPubMedGoogle Scholar
  2. 2.
    Olivier EN, Qiu C, Velho M, Hirsch RE, Bouhassira EE. Large-scale production of embryonic red blood cells from human embryonic stem cells. Exp Hematol. 2006;34(12):1635–42.  https://doi.org/10.1016/j.exphem.2006.07.003.CrossRefPubMedGoogle Scholar
  3. 3.
    Zambidis ET, Peault B, Park TS, Bunz F, Civin CI. Hematopoietic differentiation of human embryonic stem cells progresses through sequential hematoendothelial, primitive, and definitive stages resembling human yolk sac development. Blood. 2005;106(3):860–70.  https://doi.org/10.1182/blood-2004-11-4522.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Peyrard T, Bardiaux L, Krause C, Kobari L, Lapillonne H, Andreu G, et al. Banking of pluripotent adult stem cells as an unlimited source for red blood cell production: potential applications for alloimmunized patients and rare blood challenges. Transfus Med Rev. 2011;25(3):206–16.  https://doi.org/10.1016/j.tmrv.2011.01.002.CrossRefPubMedGoogle Scholar
  5. 5.
    Baron MH, Fraser ST. The specification of early hematopoiesis in the mammal. Curr Opin Hematol. 2005;12(3):217–21.CrossRefGoogle Scholar
  6. 6.
    Doulatov S, Notta F, Laurenti E, Dick JE. Hematopoiesis: a human perspective. Cell Stem Cell. 2012;10(2):120–36.  https://doi.org/10.1016/j.stem.2012.01.006.CrossRefPubMedGoogle Scholar
  7. 7.
    Tavian M, Peault B. Embryonic development of the human hematopoietic system. Int J Dev Biol. 2005;49(2–3):243–50.  https://doi.org/10.1387/ijdb.041957mt.CrossRefPubMedGoogle Scholar
  8. 8.
    Medvinsky AL, Dzierzak EA. Development of the definitive hematopoietic hierarchy in the mouse. Dev Comp Immunol. 1998;22(3):289–301.CrossRefGoogle Scholar
  9. 9.
    Hong SH, Werbowetski-Ogilvie T, Ramos-Mejia V, Lee JB, Bhatia M. Multiparameter comparisons of embryoid body differentiation toward human stem cell applications. Stem Cell Res. 2010;5(2):120–30.  https://doi.org/10.1016/j.scr.2010.04.007.CrossRefPubMedGoogle Scholar
  10. 10.
    Ng ES, Davis RP, Azzola L, Stanley EG, Elefanty AG. Forced aggregation of defined numbers of human embryonic stem cells into embryoid bodies fosters robust, reproducible hematopoietic differentiation. Blood. 2005;106(5):1601–3.  https://doi.org/10.1182/blood-2005-03-0987.CrossRefPubMedGoogle Scholar
  11. 11.
    Lu SJ, Feng Q, Park JS, Vida L, Lee BS, Strausbauch M, et al. Biologic properties and enucleation of red blood cells from human embryonic stem cells. Blood. 2008;112(12):4475–84.  https://doi.org/10.1182/blood-2008-05-157198.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Lapillonne H, Kobari L, Mazurier C, Tropel P, Giarratana MC, Zanella-Cleon I, et al. Red blood cell generation from human induced pluripotent stem cells: perspectives for transfusion medicine. Haematologica. 2010;95(10):1651–9.  https://doi.org/10.3324/haematol.2010.023556.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Byrska-Bishop M, VanDorn D, Campbell AE, Betensky M, Arca PR, Yao Y, et al. Pluripotent stem cells reveal erythroid-specific activities of the GATA1 N-terminus. J Clin Invest. 2015;125(3):993–1005.  https://doi.org/10.1172/JCI75714.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Giani FC, Fiorini C, Wakabayashi A, Ludwig LS, Salem RM, Jobaliya CD, et al. Targeted application of human genetic variation can improve red blood cell production from stem cells. Cell Stem Cell. 2016;18(1):73–8.  https://doi.org/10.1016/j.stem.2015.09.015.CrossRefPubMedGoogle Scholar
  15. 15.
    Ledran MH, Krassowska A, Armstrong L, Dimmick I, Renstrom J, Lang R, et al. Efficient hematopoietic differentiation of human embryonic stem cells on stromal cells derived from hematopoietic niches. Cell Stem Cell. 2008;3(1):85–98.  https://doi.org/10.1016/j.stem.2008.06.001.CrossRefPubMedGoogle Scholar
  16. 16.
    Klimchenko O, Mori M, Distefano A, Langlois T, Larbret F, Lecluse Y, et al. A common bipotent progenitor generates the erythroid and megakaryocyte lineages in embryonic stem cell-derived primitive hematopoiesis. Blood. 2009;114(8):1506–17.  https://doi.org/10.1182/blood-2008-09-178863.CrossRefPubMedGoogle Scholar
  17. 17.
    Qiu C, Hanson E, Olivier E, Inada M, Kaufman DS, Gupta S, et al. Differentiation of human embryonic stem cells into hematopoietic cells by coculture with human fetal liver cells recapitulates the globin switch that occurs early in development. Exp Hematol. 2005;33(12):1450–8.  https://doi.org/10.1016/j.exphem.2005.09.003.CrossRefPubMedGoogle Scholar
  18. 18.
    Chang CJ, Mitra K, Koya M, Velho M, Desprat R, Lenz J, et al. Production of embryonic and fetal-like red blood cells from human induced pluripotent stem cells. PLoS One. 2011;6(10):e25761.  https://doi.org/10.1371/journal.pone.0025761.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Qiu C, Olivier EN, Velho M, Bouhassira EE. Globin switches in yolk sac-like primitive and fetal-like definitive red blood cells produced from human embryonic stem cells. Blood. 2008;111(4):2400–8.  https://doi.org/10.1182/blood-2007-07-102087.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Ma F, Ebihara Y, Umeda K, Sakai H, Hanada S, Zhang H, et al. Generation of functional erythrocytes from human embryonic stem cell-derived definitive hematopoiesis. Proc Natl Acad Sci U S A. 2008;105(35):13087–92.  https://doi.org/10.1073/pnas.0802220105.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    •• Sturgeon CM, Ditadi A, Awong G, Kennedy M, Keller G. Wnt signaling controls the specification of definitive and primitive hematopoiesis from human pluripotent stem cells. Nat Biotechnol. 2014;32(6):554–61.  https://doi.org/10.1038/nbt.2915 This paper established simple selective differentiation strategies for the generation of primitive or definitive hematopoietic progenitors by Wnt-ß-catenin manipulation, providing access to enriched populations. CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Ditadi A, Sturgeon CM, Tober J, Awong G, Kennedy M, Yzaguirre AD, et al. Human definitive haemogenic endothelium and arterial vascular endothelium represent distinct lineages. Nat Cell Biol. 2015;17(5):580–91.  https://doi.org/10.1038/ncb3161.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Kobari L, Yates F, Oudrhiri N, Francina A, Kiger L, Mazurier C, et al. Human induced pluripotent stem cells can reach complete terminal maturation: in vivo and in vitro evidence in the erythropoietic differentiation model. Haematologica. 2012;97(12):1795–803.  https://doi.org/10.3324/haematol.2011.055566.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Dias J, Gumenyuk M, Kang H, Vodyanik M, Yu J, Thomson JA, et al. Generation of red blood cells from human induced pluripotent stem cells. Stem Cells Dev. 2011;20(9):1639–47.  https://doi.org/10.1089/scd.2011.0078.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Yang CT, Ma R, Axton RA, Jackson M, Taylor AH, Fidanza A, et al. Activation of KLF1 enhances the differentiation and maturation of red blood cells from human pluripotent stem cells. Stem Cells. 2017;35(4):886–97.  https://doi.org/10.1002/stem.2562.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Olivier EN, Marenah L, McCahill A, Condie A, Cowan S, Mountford JC. High-efficiency serum-free feeder-free erythroid differentiation of human pluripotent stem cells using small molecules. Stem Cells Transl Med. 2016;5(10):1394–405.  https://doi.org/10.5966/sctm.2015-0371.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Ran D, Shia WJ, Lo MC, Fan JB, Knorr DA, Ferrell PI, et al. RUNX1a enhances hematopoietic lineage commitment from human embryonic stem cells and inducible pluripotent stem cells. Blood. 2013;121(15):2882–90.  https://doi.org/10.1182/blood-2012-08-451641.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Olmer R, Lange A, Selzer S, Kasper C, Haverich A, Martin U, et al. Suspension culture of human pluripotent stem cells in controlled, stirred bioreactors. Tissue Eng Part C Methods. 2012;18(10):772–84.  https://doi.org/10.1089/ten.TEC.2011.0717.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Serra M, Brito C, Sousa MF, Jensen J, Tostoes R, Clemente J, et al. Improving expansion of pluripotent human embryonic stem cells in perfused bioreactors through oxygen control. J Biotechnol. 2010;148(4):208–15.  https://doi.org/10.1016/j.jbiotec.2010.06.015.CrossRefPubMedGoogle Scholar
  30. 30.
    Amit M, Chebath J, Margulets V, Laevsky I, Miropolsky Y, Shariki K, et al. Suspension culture of undifferentiated human embryonic and induced pluripotent stem cells. Stem Cell Rev. 2010;6(2):248–59.  https://doi.org/10.1007/s12015-010-9149-y.CrossRefPubMedGoogle Scholar
  31. 31.
    Timmins NE, Athanasas S, Gunther M, Buntine P, Nielsen LK. Ultra-high-yield manufacture of red blood cells from hematopoietic stem cells. Tissue Eng Part C Methods. 2011;17(11):1131–7.  https://doi.org/10.1089/ten.TEC.2011.0207.CrossRefPubMedGoogle Scholar
  32. 32.
    Bayley R, Ahmed F, Glen K, McCall M, Stacey A, Thomas R. The productivity limit of manufacturing blood cell therapy in scalable stirred bioreactors. J Tissue Eng Regen Med. 2018;12(1):e368–e78.  https://doi.org/10.1002/term.2337.CrossRefPubMedGoogle Scholar
  33. 33.
    Zhang Y, Wang C, Wang L, Shen B, Guan X, Tian J, et al. Large-scale ex vivo generation of human red blood cells from cord blood CD34(+) cells. Stem Cells Transl Med. 2017;6(8):1698–709.  https://doi.org/10.1002/sctm.17-0057.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Thiagarajan P, Afshar-Kharghan V. Platelet transfusion therapy. Hematol Oncol Clin North Am. 2013;27(3):629–43.  https://doi.org/10.1016/j.hoc.2013.03.004.CrossRefPubMedGoogle Scholar
  35. 35.
    Lok S, Kaushansky K, Holly RD, Kuijper JL, Lofton-Day CE, Oort PJ, et al. Cloning and expression of murine thrombopoietin cDNA and stimulation of platelet production in vivo. Nature. 1994;369(6481):565–8.  https://doi.org/10.1038/369565a0.CrossRefPubMedGoogle Scholar
  36. 36.
    Choi ES, Nichol JL, Hokom MM, Hornkohl AC, Hunt P. Platelets generated in vitro from proplatelet-displaying human megakaryocytes are functional. Blood. 1995;85(2):402–13.PubMedGoogle Scholar
  37. 37.
    Yarovoi HV, Kufrin D, Eslin DE, Thornton MA, Haberichter SL, Shi Q, et al. Factor VIII ectopically expressed in platelets: efficacy in hemophilia A treatment. Blood. 2003;102(12):4006–13.  https://doi.org/10.1182/blood-2003-05-1519.CrossRefPubMedGoogle Scholar
  38. 38.
    Kufrin D, Eslin DE, Bdeir K, Murciano JC, Kuo A, Kowalska MA, et al. Antithrombotic thrombocytes: ectopic expression of urokinase-type plasminogen activator in platelets. Blood. 2003;102(3):926–33.  https://doi.org/10.1182/blood-2003-01-0054.CrossRefPubMedGoogle Scholar
  39. 39.
    •• Ito Y, Nakamura S, Sugimoto N, Shigemori T, Kato Y, Ohno M, et al. Turbulence activates platelet biogenesis to enable clinical scale ex vivo production. Cell. 2018;174(3):636–48 e18.  https://doi.org/10.1016/j.cell.2018.06.011 This paper offers a first approach to generating sufficient cell progenitors to produce functional platelets sufficient to be able to supply a significant portion of the platelet transfused population. CrossRefPubMedGoogle Scholar
  40. 40.
    Dunois-Larde C, Capron C, Fichelson S, Bauer T, Cramer-Borde E, Baruch D. Exposure of human megakaryocytes to high shear rates accelerates platelet production. Blood. 2009;114(9):1875–83.  https://doi.org/10.1182/blood-2009-03-209205.CrossRefPubMedGoogle Scholar
  41. 41.
    Pallotta I, Lovett M, Kaplan DL, Balduini A. Three-dimensional system for the in vitro study of megakaryocytes and functional platelet production using silk-based vascular tubes. Tissue Eng Part C Methods. 2011;17(12):1223–32.  https://doi.org/10.1089/ten.tec.2011.0134.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Nakagawa Y, Nakamura S, Nakajima M, Endo H, Dohda T, Takayama N, et al. Two differential flows in a bioreactor promoted platelet generation from human pluripotent stem cell-derived megakaryocytes. Exp Hematol. 2013;41(8):742–8.  https://doi.org/10.1016/j.exphem.2013.04.007.CrossRefPubMedGoogle Scholar
  43. 43.
    Thon JN, Mazutis L, Wu S, Sylman JL, Ehrlicher A, Machlus KR, et al. Platelet bioreactor-on-a-chip. Blood. 2014;124(12):1857–67.CrossRefGoogle Scholar
  44. 44.
    Paulus JM, Deschamps JF, Prenant M, Casals FJ. Kinetics of platelets, megakaryocytes and their precursors: what to measure? Blood Cells. 1980;6(2):215–28.PubMedGoogle Scholar
  45. 45.
    Takayama N, Eto K. In vitro generation of megakaryocytes and platelets from human embryonic stem cells and induced pluripotent stem cells. Methods Mol Biol. 2012;788:205–17.  https://doi.org/10.1007/978-1-61779-307-3_15.CrossRefPubMedGoogle Scholar
  46. 46.
    Wang Y, Hayes V, Jarocha D, Sim X, Harper DC, Fuentes R, et al. Comparative analysis of human ex vivo-generated platelets vs megakaryocyte-generated platelets in mice: a cautionary tale. Blood. 2015;125(23):3627–36.  https://doi.org/10.1182/blood-2014-08-593053.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Haas S, Hansson J, Klimmeck D, Loeffler D, Velten L, Uckelmann H, et al. Inflammation-induced emergency megakaryopoiesis driven by hematopoietic stem cell-like megakaryocyte progenitors. Cell Stem Cell. 2015;17(4):422–34.  https://doi.org/10.1016/j.stem.2015.07.007.CrossRefPubMedGoogle Scholar
  48. 48.
    Sabri S, Foudi A, Boukour S, Franc B, Charrier S, Jandrot-Perrus M, et al. Deficiency in the Wiskott-Aldrich protein induces premature proplatelet formation and platelet production in the bone marrow compartment. Blood. 2006;108(1):134–40.  https://doi.org/10.1182/blood-2005-03-1219.CrossRefPubMedGoogle Scholar
  49. 49.
    Junt T, Schulze H, Chen Z, Massberg S, Goerge T, Krueger A, et al. Dynamic visualization of thrombopoiesis within bone marrow. Science. 2007;317(5845):1767–70.  https://doi.org/10.1126/science.1146304.CrossRefPubMedGoogle Scholar
  50. 50.
    Zhang L, Orban M, Lorenz M, Barocke V, Braun D, Urtz N, et al. A novel role of sphingosine 1-phosphate receptor S1pr1 in mouse thrombopoiesis. J Exp Med. 2012;209(12):2165–81.  https://doi.org/10.1084/jem.20121090.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    •• Lefrancais E, Ortiz-Munoz G, Caudrillier A, Mallavia B, Liu F, Sayah DM, et al. The lung is a site of platelet biogenesis and a reservoir for haematopoietic progenitors. Nature. 2017;544(7648):105–9.  https://doi.org/10.1038/nature21706 This paper provides visual proof that megakaryocytes can normally shed platelets outside the medullary system. CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Fuentes R, Wang Y, Hirsch J, Wang C, Rauova L, Worthen GS, et al. Infusion of mature megakaryocytes into mice yields functional platelets. J Clin Invest. 2010;120(11):3917–22.  https://doi.org/10.1172/JCI43326.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Sim X, Jarocha D, Hayes V, Hanby HA, Marks MS, Camire RM, et al. Identifying and enriching platelet-producing human stem cell-derived megakaryocytes using factor V uptake. Blood. 2017;130(2):192–204.  https://doi.org/10.1182/blood-2017-01-761049.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Perdomo J, Yan F, Leung HHL, Chong BH. Megakaryocyte differentiation and platelet formation from human cord blood-derived CD34+ cells. J Vis Exp. 2017;(130). doi: https://doi.org/10.3791/56420.
  55. 55.
    Ferrer-Marin F, Stanworth S, Josephson C, Sola-Visner M. Distinct differences in platelet production and function between neonates and adults: implications for platelet transfusion practice. Transfusion. 2013;53(11):2814–21; quiz 3.  https://doi.org/10.1111/trf.12343.CrossRefPubMedGoogle Scholar
  56. 56.
    Matsubara Y, Saito E, Suzuki H, Watanabe N, Murata M, Ikeda Y. Generation of megakaryocytes and platelets from human subcutaneous adipose tissues. Biochem Biophys Res Commun. 2009;378(4):716–20.  https://doi.org/10.1016/j.bbrc.2008.11.117.CrossRefPubMedGoogle Scholar
  57. 57.
    Lis R, Karrasch CC, Poulos MG, Kunar B, Redmond D, Duran JGB, et al. Conversion of adult endothelium to immunocompetent haematopoietic stem cells. Nature. 2017;545(7655):439–45.  https://doi.org/10.1038/nature22326.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Sola-Visner M. Platelets in the neonatal period: developmental differences in platelet production, function, and hemostasis and the potential impact of therapies. Hematology Am Soc Hematol Educ Program. 2012;2012:506–11.  https://doi.org/10.1182/asheducation-2012.1.506.CrossRefPubMedGoogle Scholar
  59. 59.
    Vo KK, Jarocha DJ, Lyde RB, Hayes V, Thom CS, Sullivan SK, et al. FLI1 level during megakaryopoiesis affects thrombopoiesis and platelet biology. Blood. 2017;129(26):3486–94.  https://doi.org/10.1182/blood-2017-02-770958.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Sullivan SK, Mills JA, Koukouritaki SB, Vo KK, Lyde RB, Paluru P, et al. High-level transgene expression in induced pluripotent stem cell-derived megakaryocytes: correction of Glanzmann thrombasthenia. Blood. 2014;123(5):753–7.  https://doi.org/10.1182/blood-2013-10-530725.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Leung A, Zulick E, Skvir N, Vanuytsel K, Morrison TA, Naing ZH et al. Notch and aryl hydrocarbon receptor signaling impact definitive hematopoiesis from human pluripotent stem cells. Stem Cells. 2018. doi: https://doi.org/10.1002/stem.2822.CrossRefGoogle Scholar
  62. 62.
    Nakamura S, Takayama N, Hirata S, Seo H, Endo H, Ochi K, et al. Expandable megakaryocyte cell lines enable clinically applicable generation of platelets from human induced pluripotent stem cells. Cell Stem Cell. 2014;14(4):535–48.  https://doi.org/10.1016/j.stem.2014.01.011.CrossRefPubMedGoogle Scholar
  63. 63.
    Moreau T, Evans AL, Vasquez L, Tijssen MR, Yan Y, Trotter MW, et al. Large-scale production of megakaryocytes from human pluripotent stem cells by chemically defined forward programming. Nat Commun. 2016;7:11208.  https://doi.org/10.1038/ncomms11208.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Hyun Hyung An
    • 1
  • Mortimer Poncz
    • 2
    • 3
  • Stella T. Chou
    • 3
    • 4
  1. 1.Department of PediatricsThe Children’s Hospital of PhiladelphiaPhiladelphiaUSA
  2. 2.Department of PediatricsThe Children’s Hospital of PhiladelphiaPhiladelphiaUSA
  3. 3.Perelman School of Medicine at the University of PennsylvaniaPhiladelphiaUSA
  4. 4.Department of PediatricsThe Children’s Hospital of PhiladelphiaPhiladelphiaUSA

Personalised recommendations