Current Stem Cell Reports

, Volume 3, Issue 1, pp 19–27 | Cite as

Transcriptional Regulation of Stem Cell and Cancer Stem Cell Metabolism

  • Ahmet Alptekin
  • Bingwei Ye
  • Han-Fei DingEmail author
Metabolism and Stem Cells (D Nakada, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Metabolism and Stem Cells


Purpose of Review

Metabolism is increasingly recognized as a major player in control of stem cell function and fate. How stem cell metabolism is established, maintained, and regulated is a fundamental question of biology and medicine. In this review, we discuss major metabolic programs in stem cells and cancer stem cells, with a focus on key transcription factors that shape the stem cell metabolic phenotype.

Recent Findings

Cancer stem cells primarily use oxidative phosphorylation for energy generation, in contrast to normal stem cells, which rely on glycolytic metabolism with the exception of mouse embryonic stem cells. Transcription factors control the metabolic phenotype of stem cells by modulating the expression of enzymes and thus the activity of metabolic pathways. It is evident that HIF1α and PGC1α function as master regulators of glycolytic and mitochondrial metabolism, respectively.


Transcriptional regulation is a key mechanism for establishing specific metabolic programs in stem cells and cancer stem cells.


Stem cells Cancer stem cells Metabolism Glycolysis Oxidative phosphorylation Mitochondria Transcription 



H.-F.D. is supported by a grant from the US National Institutes of Health (R01CA190429).

Compliance with Ethical Standards

Conflict of Interest

Ahmet Alptekin, Bingwei Ye, and Han-Fei Ding declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.


Papers of particular interest, published recently, have been highlighted as: • Of importance,•• Of major importance

  1. 1.
    De Los AA, Ferrari F, Xi R, Fujiwara Y, Benvenisty N, Deng H, et al. Hallmarks of pluripotency. Nature. 2015;525(7570):469–78. doi: 10.1038/nature15515.CrossRefGoogle Scholar
  2. 2.
    Weissman IL, Anderson DJ, Gage F. Stem and progenitor cells: origins, phenotypes, lineage commitments, and transdifferentiations. Annu Rev Cell Dev Biol. 2001;17:387–403. doi: 10.1146/annurev.cellbio.17.1.387.PubMedCrossRefGoogle Scholar
  3. 3.
    Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, et al. Embryonic stem cell lines derived from human blastocysts. Science. 1998;282(5391):1145–7.PubMedCrossRefGoogle Scholar
  4. 4.
    Evans MJ, Kaufman MH. Establishment in culture of pluripotential cells from mouse embryos. Nature. 1981;292(5819):154–6.PubMedCrossRefGoogle Scholar
  5. 5.
    Martin GR. Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci U S A. 1981;78(12):7634–8.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126(4):663–76. doi: 10.1016/j.cell.2006.07.024.PubMedCrossRefGoogle Scholar
  7. 7.
    Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007;131(5):861–72. doi: 10.1016/j.cell.2007.11.019.PubMedCrossRefGoogle Scholar
  8. 8.
    Copley MR, Beer PA, Eaves CJ. Hematopoietic stem cell heterogeneity takes center stage. Cell Stem Cell. 2012;10(6):690–7. doi: 10.1016/j.stem.2012.05.006.PubMedCrossRefGoogle Scholar
  9. 9.
    Bond AM, Ming GL, Song H. Adult mammalian neural stem cells and neurogenesis: five decades later. Cell Stem Cell. 2015;17(4):385–95. doi: 10.1016/j.stem.2015.09.003.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Fialkow PJ. Clonal origin of human tumors. Biochim Biophys Acta. 1976;458(3):283–321.PubMedGoogle Scholar
  11. 11.
    Tannock IF. Principles of cell proliferation: cell kinetics. In: DeVita VT, Hellman S, Rosenberg SA, editors. Cancer: principles and practice of oncology. 3rd ed. Philadelphia: J.B. Lipincott; 1989. p. 3–13.Google Scholar
  12. 12.
    Heppner GH. Tumor heterogeneity. Cancer Res. 1984;44(6):2259–65.PubMedGoogle Scholar
  13. 13.
    Reya T, Morrison SJ, Clarke MF, Weissman IL. Stem cells, cancer, and cancer stem cells. Nature. 2001;414(6859):105–11.PubMedCrossRefGoogle Scholar
  14. 14.
    Meacham CE, Morrison SJ. Tumour heterogeneity and cancer cell plasticity. Nature. 2013;501(7467):328–37. doi: 10.1038/nature12624.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Lapidot T, Sirard C, Vormoor J, Murdoch B, Hoang T, Caceres-Cortes J, et al. A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature. 1994;367(6464):645–8. doi: 10.1038/367645a0.PubMedCrossRefGoogle Scholar
  16. 16.
    Wang JC, Lapidot T, Cashman JD, Doedens M, Addy L, Sutherland DR, et al. High level engraftment of NOD/SCID mice by primitive normal and leukemic hematopoietic cells from patients with chronic myeloid leukemia in chronic phase. Blood. 1998;91(7):2406–14.PubMedGoogle Scholar
  17. 17.
    Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A. 2003;100(7):3983–8. doi: 10.1073/pnas.0530291100.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Singh SK, Hawkins C, Clarke ID, Squire JA, Bayani J, Hide T, et al. Identification of human brain tumour initiating cells. Nature. 2004;432(7015):396–401.PubMedCrossRefGoogle Scholar
  19. 19.
    Dalerba P, Dylla SJ, Park IK, Liu R, Wang X, Cho RW, et al. Phenotypic characterization of human colorectal cancer stem cells. Proc Natl Acad Sci U S A. 2007;104(24):10158–63. doi: 10.1073/pnas.0703478104.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    O'Brien CA, Pollett A, Gallinger S, Dick JE. A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature. 2007;445(7123):106–10. doi: 10.1038/nature05372.PubMedCrossRefGoogle Scholar
  21. 21.
    Ricci-Vitiani L, Lombardi DG, Pilozzi E, Biffoni M, Todaro M, Peschle C, et al. Identification and expansion of human colon-cancer-initiating cells. Nature. 2007;445(7123):111–5. doi: 10.1038/nature05384.PubMedCrossRefGoogle Scholar
  22. 22.
    Li C, Heidt DG, Dalerba P, Burant CF, Zhang L, Adsay V, et al. Identification of pancreatic cancer stem cells. Cancer Res. 2007;67(3):1030–7. doi: 10.1158/0008-5472.CAN-06-2030.PubMedCrossRefGoogle Scholar
  23. 23.
    Curley MD, Therrien VA, Cummings CL, Sergent PA, Koulouris CR, Friel AM, et al. CD133 expression defines a tumor initiating cell population in primary human ovarian cancer. Stem Cells. 2009;27(12):2875–83. doi: 10.1002/stem.236.PubMedGoogle Scholar
  24. 24.
    Zhang S, Balch C, Chan MW, Lai HC, Matei D, Schilder JM, et al. Identification and characterization of ovarian cancer-initiating cells from primary human tumors. Cancer Res. 2008;68(11):4311–20. doi: 10.1158/0008-5472.CAN-08-0364.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Kleinsmith LJ, Pierce Jr GB. Multipotentiality of single embryonal carcinoma cells. Cancer Res. 1964;24:1544–51.PubMedGoogle Scholar
  26. 26.
    Martin GR. Teratocarcinomas and mammalian embryogenesis. Science. 1980;209(4458):768–76.PubMedCrossRefGoogle Scholar
  27. 27.
    Nichols J, Smith A. Naive and primed pluripotent states. Cell Stem Cell. 2009;4(6):487–92. doi: 10.1016/j.stem.2009.05.015.PubMedCrossRefGoogle Scholar
  28. 28.
    • Ito K, Suda T. Metabolic requirements for the maintenance of self-renewing stem cells. Nat Rev Mol Cell Biol. 2014;15(4):243–56. doi: 10.1038/nrm3772. This review provides a thorough overview of metabolic pathways for the maintenance of adult tissue stem cells.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Chandel NS, Jasper H, Ho TT, Passegue E. Metabolic regulation of stem cell function in tissue homeostasis and organismal ageing. Nat Cell Biol. 2016;18(8):823–32. doi: 10.1038/ncb3385.PubMedCrossRefGoogle Scholar
  30. 30.
    Shyh-Chang N, Daley GQ, Cantley LC. Stem cell metabolism in tissue development and aging. Development. 2013;140(12):2535–47. doi: 10.1242/dev.091777.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Wu J, Ocampo A, Izpisua Belmonte JC. Cellular metabolism and induced pluripotency. Cell. 2016;166(6):1371–85. doi: 10.1016/j.cell.2016.08.008.PubMedCrossRefGoogle Scholar
  32. 32.
    • Peiris-Pagès M, Martinez-Outschoorn UE, Pestell RG, Sotgia F, Lisanti MP. Cancer stem cell metabolism. Breast Cancer Res. 2016;18(1):1–10. doi: 10.1186/s13058-016-0712-6. This review provides the most updated information on metabolic phenotypes of cancer stem cells.CrossRefGoogle Scholar
  33. 33.
    Viale A, Draetta GF. Sugar? No thank you, just a deep breath of oxygen for cancer stem cells. Cell Metab. 2015;22(4):543–5. doi: 10.1016/j.cmet.2015.09.020.PubMedCrossRefGoogle Scholar
  34. 34.
    O'Neill LAJ, Kishton RJ, Rathmell J. A guide to immunometabolism for immunologists. Nat Rev Immunol. 2016;16(9):553–65. doi: 10.1038/nri.2016.70.PubMedCrossRefGoogle Scholar
  35. 35.
    Warburg O. On respiratory impairment in cancer cells. Science. 1956;124:269–70.PubMedGoogle Scholar
  36. 36.
    MacIver NJ, Michalek RD, Rathmell JC. Metabolic regulation of T lymphocytes. Annu Rev Immunol. 2013;31:259–83. doi: 10.1146/annurev-immunol-032712-095956.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Agathocleous M, Harris WA. Metabolism in physiological cell proliferation and differentiation. Trends Cell Biol. 2013;23(10):484–92. doi: 10.1016/j.tcb.2013.05.004.PubMedCrossRefGoogle Scholar
  38. 38.
    Zhou W, Choi M, Margineantu D, Margaretha L, Hesson J, Cavanaugh C, et al. HIF1α induced switch from bivalent to exclusively glycolytic metabolism during ESC-to-EpiSC/hESC transition. EMBO J. 2012;31(9):2103–16. doi: 10.1038/emboj.2012.71.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Tesar PJ, Chenoweth JG, Brook FA, Davies TJ, Evans EP, Mack DL, et al. New cell lines from mouse epiblast share defining features with human embryonic stem cells. Nature. 2007;448(7150):196–9. doi: 10.1038/nature05972.PubMedCrossRefGoogle Scholar
  40. 40.
    Zhang J, Khvorostov I, Hong JS, Oktay Y, Vergnes L, Nuebel E, et al. UCP2 regulates energy metabolism and differentiation potential of human pluripotent stem cells. EMBO J. 2011;30(24):4860–73. doi: 10.1038/emboj.2011.401.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Ware CB, Nelson AM, Mecham B, Hesson J, Zhou W, Jonlin EC, et al. Derivation of naive human embryonic stem cells. Proc Natl Acad Sci U S A. 2014;111(12):4484–9. doi: 10.1073/pnas.1319738111.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Takashima Y, Guo G, Loos R, Nichols J, Ficz G, Krueger F, et al. Resetting transcription factor control circuitry toward ground-state pluripotency in human. Cell. 2014;158(6):1254–69. doi: 10.1016/j.cell.2014.08.029.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Huang K, Maruyama T, Fan G. The naive state of human pluripotent stem cells: a synthesis of stem cell and preimplantation embryo transcriptome analyses. Cell Stem Cell. 2014;15(4):410–5. doi: 10.1016/j.stem.2014.09.014.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Folmes CD, Nelson TJ, Martinez-Fernandez A, Arrell DK, Lindor JZ, Dzeja PP, et al. Somatic oxidative bioenergetics transitions into pluripotency-dependent glycolysis to facilitate nuclear reprogramming. Cell Metab. 2011;14(2):264–71. doi: 10.1016/j.cmet.2011.06.011.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Panopoulos AD, Yanes O, Ruiz S, Kida YS, Diep D, Tautenhahn R, et al. The metabolome of induced pluripotent stem cells reveals metabolic changes occurring in somatic cell reprogramming. Cell Res. 2012;22(1):168–77. doi: 10.1038/cr.2011.177.PubMedCrossRefGoogle Scholar
  46. 46.
    Hawkins KE, Joy S, Delhove JM, Kotiadis VN, Fernandez E, Fitzpatrick LM, et al. NRF2 orchestrates the metabolic shift during induced pluripotent stem cell reprogramming. Cell Rep. 2016;14(8):1883–91. doi: 10.1016/j.celrep.2016.02.003.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Kida Yasuyuki S, Kawamura T, Wei Z, Sogo T, Jacinto S, Shigeno A, et al. ERRs mediate a metabolic switch required for somatic cell reprogramming to pluripotency. Cell Stem Cell. 2015;16(5):547–55. doi: 10.1016/j.stem.2015.03.001.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Cheung TH, Rando TA. Molecular regulation of stem cell quiescence. Nat Rev Mol Cell Biol. 2013;14(6):329–40. doi: 10.1038/nrm3591.PubMedCrossRefGoogle Scholar
  49. 49.
    Cavallucci V, Fidaleo M, Pani G. Neural stem cells and nutrients: poised between quiescence and exhaustion. Trends Endocrinol Metab. 2016; doi: 10.1016/j.tem.2016.06.007.PubMedGoogle Scholar
  50. 50.
    DeBerardinis RJ, Lum JJ, Hatzivassiliou G, Thompson CB. The biology of cancer: metabolic reprogramming fuels cell growth and proliferation. Cell Metab. 2008;7(1):11–20. doi: 10.1016/j.cmet.2007.10.002.PubMedCrossRefGoogle Scholar
  51. 51.
    Vander Heiden MG, Cantley LC, Thompson CB. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science. 2009;324(5930):1029–33. doi: 10.1126/science.1160809.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Cairns RA, Harris IS, Mak TW. Regulation of cancer cell metabolism. Nat Rev Cancer. 2011;11(2):85–95. doi: 10.1038/nrc2981.PubMedCrossRefGoogle Scholar
  53. 53.
    • Pavlova NN, Thompson CB. The emerging hallmarks of cancer metabolism. Cell Metab. 2016;23(1):27–47. doi: 10.1016/j.cmet.2015.12.006. This comprehensive review catalogs cancer-related metabolic changes with disscussion of their contributions to tumorigenesis.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Ciavardelli D, Rossi C, Barcaroli D, Volpe S, Consalvo A, Zucchelli M, et al. Breast cancer stem cells rely on fermentative glycolysis and are sensitive to 2-deoxyglucose treatment. Cell Death Dis. 2014;5:e1336. doi: 10.1038/cddis.2014.285.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Liao J, Qian F, Tchabo N, Mhawech-Fauceglia P, Beck A, Qian Z, et al. Ovarian cancer spheroid cells with stem cell-like properties contribute to tumor generation, metastasis and chemotherapy resistance through hypoxia-resistant metabolism. PLoS One. 2014;9(1):e84941. doi: 10.1371/journal.pone.0084941.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Emmink BL, Verheem A, Van Houdt WJ, Steller EJA, Govaert KM, Pham TV, et al. The secretome of colon cancer stem cells contains drug-metabolizing enzymes. J Proteome. 2013;91:84–96. doi: 10.1016/j.jprot.2013.06.027.CrossRefGoogle Scholar
  57. 57.
    Viale A, Corti D, Draetta GF. Tumors and mitochondrial respiration: a neglected connection. Cancer Res. 2015;75(18):3687–91. doi: 10.1158/0008-5472.can-15-0491.CrossRefGoogle Scholar
  58. 58.
    Vlashi E, Pajonk F. The metabolic state of cancer stem cells—a valid target for cancer therapy? Free Radic Biol Med. 2015;79:264–8. doi: 10.1016/j.freeradbiomed.2014.10.732.PubMedCrossRefGoogle Scholar
  59. 59.
    Dando I, Dalla Pozza E, Biondani G, Cordani M, Palmieri M, Donadelli M. The metabolic landscape of cancer stem cells. IUBMB Life. 2015;67(9):687–93. doi: 10.1002/iub.1426.PubMedCrossRefGoogle Scholar
  60. 60.
    Janiszewska M, Suvà ML, Riggi N, Houtkooper RH, Auwerx J, Clément-Schatlo V, et al. Imp2 controls oxidative phosphorylation and is crucial for preserving glioblastoma cancer stem cells. Genes Dev. 2012;26(17):1926–44. doi: 10.1101/gad.188292.112.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Vlashi E, Lagadec C, Vergnes L, Matsutani T, Masui K, Poulou M, et al. Metabolic state of glioma stem cells and nontumorigenic cells. Proc Natl Acad Sci. 2011;108(38):16062–7. doi: 10.1073/pnas.1106704108.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Lagadinou Eleni D, Sach A, Callahan K, Rossi Randall M, Neering Sarah J, Minhajuddin M, et al. BCL-2 inhibition targets oxidative phosphorylation and selectively eradicates quiescent human leukemia stem cells. Cell Stem Cell. 2013;12(3):329–41. doi: 10.1016/j.stem.2012.12.013.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Pasto A, Bellio C, Pilotto G, Ciminale V, Silic-Benussi M, Guzzo G, et al. Cancer stem cells from epithelial ovarian cancer patients privilege oxidative phosphorylation, and resist glucose deprivation. Oncotarget. 2014;5(12):4305–19. doi: 10.18632/oncotarget.2010.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Farnie G, Sotgia F, Lisanti MP. High mitochondrial mass identifies a sub-population of stem-like cancer cells that are chemo-resistant. Oncotarget. 2015;6(31):30472–86. doi: 10.18632/oncotarget.5401.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Wolf DA. Is reliance on mitochondrial respiration a “chink in the armor” of therapy-resistant cancer? Cancer Cell. 2014;26(6):788–95. doi: 10.1016/j.ccell.2014.10.001.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Roesch A, Fukunaga-Kalabis M, Schmidt EC, Zabierowski SE, Brafford PA, Vultur A, et al. A temporarily distinct subpopulation of slow-cycling melanoma cells is required for continuous tumor growth. Cell. 2010;141(4):583–94. doi: 10.1016/j.cell.2010.04.020.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Roesch A, Vultur A, Bogeski I, Wang H, Zimmermann Katharina M, Speicher D, et al. Overcoming intrinsic multidrug resistance in melanoma by blocking the mitochondrial respiratory chain of slow-cycling JARID1B high cells. Cancer Cell. 2013;23(6):811–25. doi: 10.1016/j.ccr.2013.05.003.PubMedCrossRefGoogle Scholar
  68. 68.
    •• Viale A, Pettazzoni P, Lyssiotis CA, Ying H, Sanchez N, Marchesini M, et al. Oncogene ablation-resistant pancreatic cancer cells depend on mitochondrial function. Nature. 2014;514(7524):628–32. doi: 10.1038/nature13611. This study provides experimental evidence for targeting oxidative phosphorylation as a therapeutic strategy for eliminating pancreatic cancer stem cells PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    •• Sancho P, Burgos-Ramos E, Tavera A, Bou Kheir T, Jagust P, Schoenhals M, et al. MYC/PGC-1α balance determines the metabolic phenotype and plasticity of pancreatic cancer stem cells. Cell Metab. 2015;22(4):590–605. doi: 10.1016/j.cmet.2015.08.015. This study describes a molecular mechanism for the metabolic plasticity of pancreatic cancer stem cells.PubMedCrossRefGoogle Scholar
  70. 70.
    Semenza GL. Hypoxia-inducible factors in physiology and medicine. Cell. 2012;148(3):399–408. doi: 10.1016/j.cell.2012.01.021.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Palomäki S, Pietilä M, Laitinen S, Pesälä J, Sormunen R, Lehenkari P, et al. HIF-1α is upregulated in human mesenchymal stem cells. Stem Cells. 2013;31(9):1902–9. doi: 10.1002/stem.1435.PubMedCrossRefGoogle Scholar
  72. 72.
    Suda T, Takubo K, Semenza GL. Metabolic regulation of hematopoietic stem cells in the hypoxic niche. Cell Stem Cell. 2011;9(4):298–310. doi: 10.1016/j.stem.2011.09.010.PubMedCrossRefGoogle Scholar
  73. 73.
    Hu CJ, Wang LY, Chodosh LA, Keith B, Simon MC. Differential roles of hypoxia-inducible factor 1alpha (HIF-1alpha) and HIF-2alpha in hypoxic gene regulation. Mol Cell Biol. 2003;23(24):9361–74.PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Gordan JD, Thompson CB, Simon MC. HIF and c-Myc: sibling rivals for control of cancer cell metabolism and proliferation. Cancer Cell. 2007;12(2):108–13. doi: 10.1016/j.ccr.2007.07.006.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Teslaa T, Teitell MA. Pluripotent stem cell energy metabolism: an update. EMBO J. 2015;34(2):138–53. doi: 10.15252/embj.201490446.PubMedCrossRefGoogle Scholar
  76. 76.
    Takubo K, Goda N, Yamada W, Iriuchishima H, Ikeda E, Kubota Y, et al. Regulation of the HIF-1alpha level is essential for hematopoietic stem cells. Cell Stem Cell. 2010;7(3):391–402. doi: 10.1016/j.stem.2010.06.020.PubMedCrossRefGoogle Scholar
  77. 77.
    Takubo K, Nagamatsu G, Kobayashi CI, Nakamura-Ishizu A, Kobayashi H, Ikeda E, et al. Regulation of glycolysis by Pdk functions as a metabolic checkpoint for cell cycle quiescence in hematopoietic stem cells. Cell Stem Cell. 2013;12(1):49–61. doi: 10.1016/j.stem.2012.10.011.PubMedCrossRefGoogle Scholar
  78. 78.
    Mathieu J, Zhou W, Xing Y, Sperber H, Ferreccio A, Agoston Z, et al. Hypoxia-inducible factors have distinct and stage-specific roles during reprogramming of human cells to pluripotency. Cell Stem Cell. 2014;14(5):592–605. doi: 10.1016/j.stem.2014.02.012.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Prigione A, Rohwer N, Hoffmann S, Mlody B, Drews K, Bukowiecki R, et al. HIF1alpha modulates cell fate reprogramming through early glycolytic shift and upregulation of PDK1-3 and PKM2. Stem Cells. 2014;32(2):364–76. doi: 10.1002/stem.1552.PubMedCrossRefGoogle Scholar
  80. 80.
    Argiropoulos B, Yung E, Humphries RK. Unraveling the crucial roles of Meis1 in leukemogenesis and normal hematopoiesis. Genes Dev. 2007;21(22):2845–9. doi: 10.1101/gad.1619407.PubMedCrossRefGoogle Scholar
  81. 81.
    Simsek T, Kocabas F, Zheng J, Deberardinis RJ, Mahmoud AI, Olson EN, et al. The distinct metabolic profile of hematopoietic stem cells reflects their location in a hypoxic niche. Cell Stem Cell. 2010;7(3):380–90. doi: 10.1016/j.stem.2010.07.011.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Kocabas F, Zheng J, Thet S, Copeland NG, Jenkins NA, DeBerardinis RJ, et al. Meis1 regulates the metabolic phenotype and oxidant defense of hematopoietic stem cells. Blood. 2012;120(25):4963–72. doi: 10.1182/blood-2012-05-432260.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Dang CV. MYC on the path to cancer. Cell. 2012;149(1):22–35. doi: 10.1016/j.cell.2012.03.003.PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Dang CV. MYC, metabolism, cell growth, and tumorigenesis. Cold Spring Harbor perspectives in medicine. 2013;3(8):a014217. doi: 10.1101/cshperspect.a014217.PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Kim JW, Zeller KI, Wang Y, Jegga AG, Aronow BJ, O'Donnell KA, et al. Evaluation of myc E-box phylogenetic footprints in glycolytic genes by chromatin immunoprecipitation assays. Mol Cell Biol. 2004;24(13):5923–36. doi: 10.1128/MCB.24.13.5923-5936.2004.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Osthus RC, Shim H, Kim S, Li Q, Reddy R, Mukherjee M, et al. Deregulation of glucose transporter 1 and glycolytic gene expression by c-Myc. J Biol Chem. 2000;275(29):21797–800. doi: 10.1074/jbc.C000023200.PubMedCrossRefGoogle Scholar
  87. 87.
    Zheng X, Boyer L, Jin M, Mertens J, Kim Y, Ma L, et al. Metabolic reprogramming during neuronal differentiation from aerobic glycolysis to neuronal oxidative phosphorylation. eLife. 2016;5:e13374. doi: 10.7554/eLife.13374.PubMedPubMedCentralGoogle Scholar
  88. 88.
    Scarpulla RC, Vega RB, Kelly DP. Transcriptional integration of mitochondrial biogenesis. Trends in Endocrinology & Metabolism. 2012;23(9):459–66. doi: 10.1016/j.tem.2012.06.006.CrossRefGoogle Scholar
  89. 89.
    Torres-Padilla ME, Chambers I. Transcription factor heterogeneity in pluripotent stem cells: a stochastic advantage. Development. 2014;141(11):2173–81. doi: 10.1242/dev.102624.PubMedCrossRefGoogle Scholar
  90. 90.
    Chen CL, Uthaya Kumar DB, Punj V, Xu J, Sher L, Tahara SM, et al. NANOG metabolically reprograms tumor-initiating stem-like cells through tumorigenic changes in oxidative phosphorylation and fatty acid metabolism. Cell Metab. 2016;23(1):206–19. doi: 10.1016/j.cmet.2015.12.004.PubMedCrossRefGoogle Scholar
  91. 91.
    Boiani M, Scholer HR. Regulatory networks in embryo-derived pluripotent stem cells. Nat Rev Mol Cell Biol. 2005;6(11):872–84. doi: 10.1038/nrm1744.PubMedCrossRefGoogle Scholar
  92. 92.
    Kim H, Jang H, Kim TW, Kang B-H, Lee SE, Jeon YK, et al. Core pluripotency factors directly regulate metabolism in embryonic stem cell to maintain pluripotency. Stem Cells. 2015;33(9):2699–711. doi: 10.1002/stem.2073.PubMedCrossRefGoogle Scholar
  93. 93.
    Zhang J, Nuebel E, Daley George Q, Koehler Carla M, Teitell MA. Metabolic regulation in pluripotent stem cells during reprogramming and self-renewal. Cell Stem Cell. 2012;11(5):589–95. doi: 10.1016/j.stem.2012.10.005.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Haq R, Shoag J, Andreu-Perez P, Yokoyama S, Edelman H, Rowe Glenn C, et al. Oncogenic BRAF regulates oxidative metabolism via PGC1α and MITF. Cancer Cell. 2013;23(3):302–15. doi: 10.1016/j.ccr.2013.02.003.PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Vazquez F, Lim J-H, Chim H, Bhalla K, Girnun G, Pierce K, et al. PGC1α expression defines a subset of human melanoma tumors with increased mitochondrial capacity and resistance to oxidative stress. Cancer Cell. 2013;23(3):287–301. doi: 10.1016/j.ccr.2012.11.020.PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Garraway LA, Widlund HR, Rubin MA, Getz G, Berger AJ, Ramaswamy S, et al. Integrative genomic analyses identify MITF as a lineage survival oncogene amplified in malignant melanoma. Nature. 2005;436(7047):117–22.PubMedCrossRefGoogle Scholar
  97. 97.
    Wray J, Kalkan T, Smith AG. The ground state of pluripotency. Biochem Soc Trans. 2010;38(4):1027–32. doi: 10.1042/BST0381027.PubMedCrossRefGoogle Scholar
  98. 98.
    Carbognin E, Betto RM, Soriano ME, Smith AG, Martello G. Stat3 promotes mitochondrial transcription and oxidative respiration during maintenance and induction of naive pluripotency. EMBO J. 2016;35(6):618–34. doi: 10.15252/embj.201592629.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Georgia Cancer CenterAugusta UniversityAugustaUSA
  2. 2.Department of Biochemistry and Molecular Biology, Medical College of GeorgiaAugusta UniversityAugustaUSA
  3. 3.Department of Pathology, Medical College of GeorgiaAugusta UniversityAugustaUSA

Personalised recommendations