A Pathway to a Student-Worded Definition of Limits at the Secondary-Tertiary Transition

  • Renaud Chorlay


Over the last forty years of mathematics education research, a coherent body of knowledge has accumulated regarding the teaching of limits. On this basis, it remains a challenge to identify goals and design tasks compatible with ordinary teaching conditions. This paper reports on a teaching experiment carried out in France with year 12 students, which led to the formulation by the students of a correct formal definition of the infinite limit for sequences, with minimal background logical prerequisites and in the course of a 2-h session. On a more theoretical level, the teaching project was developed in the framework of didactic engineering, and provides opportunities to contribute to the ongoing work on its adaptation to the specific context of tertiary education. In the a priori analysis, we highlight the didactical potential of tasks of differentiation between neighboring concepts as a pathway to advanced mathematical concepts. In the a posteriori analysis, we focus on the nature and extent of teacher intervention in the shaping of a mathematical milieu that is conducive to the definition of an advanced mathematical concept.


Limits Defining activity Task design Didactic engineering Theory of didactic situations 



  1. Artigue, M. (1988). Ingénierie didactique. Recherches en Didactique des Mathématiques, 9(3), 281–308.Google Scholar
  2. Artigue, M. (1991). Epistémologie et didactique. Recherche en Didactique des Mathématiques, 10(2.3), 241–286.Google Scholar
  3. Artigue, M. (2014). Potentialities and limitations of the Theory of Didactic Situations for addressing the teaching and learning of mathematics at university level. Research in Mathematics Education, 16(2), 135–138.CrossRefGoogle Scholar
  4. Artigue, M., Batanero, C., & Kent, P. (2007). Mathematical thinking and learning at post-secondary level. In F. Lester (Ed.), Second handbook of research on mathematics teaching and learning (pp. 1011–1049). Greenwich (Connecticut): Information Age Publishing.Google Scholar
  5. Balacheff, N. (1987). Processus de preuve et situations de validation. Educational Studies in Mathematics, 18(2), 147–176.CrossRefGoogle Scholar
  6. Balacheff, N., & Pedemonte, B. (2016). Establishing links between conceptions, argumentation and proof through the cK¢-enriched Toulmin model. Journal of Mathematical Behavior, 41, 104–122.CrossRefGoogle Scholar
  7. Barbé, J., Bosch, M., Espinoza, L., & Gascón, J. (2005). Didactic restrictions on the teacher’s practice: the case of limits of functions in Spanish high schools. Educational Studies in Mathematics, 59, 235–268.CrossRefGoogle Scholar
  8. Barquero, B., & Bosch, M. (2015). Didactic engineering as a research methodology: from fundamental situations to study and research paths. In A. Watson & M. Ohtani (Eds.), Task design in mathematics education (pp. 249–272). Springer international publisher Switzerland.Google Scholar
  9. Bartolini Bussi, M. (1998). Verbal interaction in the mathematics classroom: A Vygotskian analysis. In H. Steinbring, M. Bartolini Bussi, & A. Sierpinska (Eds.), Language and communication in the mathematics classroom (pp. 65–84). Reston (Virginia): National Council of Teachers of Mathematics.Google Scholar
  10. Bartolini Bussi, M. (2009). In search for theories: polyphony, polysemy and semiotic mediation in the mathematics classroom. In M. Tzekaki, M. Kaldrimidou, & C. Sakonidis (Eds.), Proceedings of the 33 rd Conference of the International Group for the Psychology of Mathematics Education (Vol. 2, pp. 121–128). Thessaloniki: PME.Google Scholar
  11. Bartolini Bussi, M., & Mariotti M. A. (2008) Semiotic mediation in the mathematics classroom: Artifacts and signs after a Vygotskian perspective. In L. English, M. Bartolini, G. Jones, R. Lesh, B. Sriraman, & D. Tirosh. (Eds.), Handbook of International research in Mathematics education (2 nd edition) (pp. 746783). New-York: Routledge Taylor & Francis.Google Scholar
  12. Bloch, I., & Gibel, P. (2011). Un modèle d’analyse des raisonnements dans les situations didactiques. Etude des niveaux de preuve dans une situation d’enseignement de la notion de limite. Recherches en Didactique des Mathématiques, 31(2), 191–228.Google Scholar
  13. Bridoux, S. (2016). Introduire la notion de convergence avec une ingénierie des années 1980 : rêve ou réalité pour l’enseignant. In E. Nardi, C. Winslow, T. Hausberger (Eds.), Proceedings of INDRUM 2016 (pp.53–62). Montpellier: Université de Montpellier et INDRUM.Google Scholar
  14. Burn, B. (2005). The vice: some historically inspired and proof-generated steps to limits of sequences. Educational Studies in Mathematics, 60(3), 269–295.CrossRefGoogle Scholar
  15. Cauchy, A.-L. (1989). Cours d’Analyse de l’Ecole Royale Polytechnique, Première partie : Analyse Algébrique (reprint of the original 1821 edition). Paris: Gabay.Google Scholar
  16. Chorlay, R. (2011). “Local – Global”: The First Twenty Years. Archive for History of Exact Sciences, 65(1), 1–66.CrossRefGoogle Scholar
  17. Chorlay, R. (2012). The making of a proof-chain: Epistemological and didactical perspectives. In B. Ubuz, Ç. Haser, & M.-A. Mariotti (Eds.), Proceedings of CERME 8 (pp. 106–115). Ankara (Turkey): Middle East Technical University.Google Scholar
  18. Chorlay, R. (2015). Questions of Generality as Probes into 19th Century Analysis. In K. Chemla, R. Chorlay, & D. Rabouin (Eds.), The Oxford Handbook of Generality in Mathematics and the Sciences (pp. 385–410). Oxford: Oxford University Press.Google Scholar
  19. Chorlay, R. (2018). An empirical study of the understanding of formal propositions about sequences, with a focus on infinite limits. In V. Durand-Guerrier, R. Hochmuth, S. Goodchild, & N. M. Hogstad (Eds.), Proceedings of the Second Conference of the International Network for Didactic Research in University Mathematics (INDRUM 2018, 5–7 April 2018) (pp. 24–33). Kristiansand (Norway): University of Agder and INDRUM.Google Scholar
  20. Chorlay, R., & de Hosson, C. (2016). History of Science, Epistemology and Mathematics Education Research. In B. Hodgson, A. Kuzniak, J.-B. Lagrange (Eds.), The Didactics of Mathematics: Approaches and Issues. A Homage to Michèle Artigue (pp. 155–189). Springer International Publishing Switzerland.Google Scholar
  21. Cobb, P., & Yackel, E. (1996). Constructivist, emergent, and sociocultural perspectives in the context of developmental research. Educational Psychologist, 31(3/4), 175–190.CrossRefGoogle Scholar
  22. Constantin, C. (2017). Formaliser, unifier et généraliser : Une alternative pour l’enseignement du calcul algébrique au collège ? Recherches en Didactique des Mathématiques, 37(1), 53–99.Google Scholar
  23. Cornu, B. (1991). Limits. In D. Tall (Ed.), Advanced Mathematical Thinking (pp. 153–166). Dordrecht: Kluwer Academic Press.Google Scholar
  24. Cottrill, J., Dubinsky, E., Nichols, K., Swhingendorf, K., Thomas, D., & Vidakovic, D. (1996). Understanding the limit concept: Beginning with a coordinated process scheme. Journal of Mathematical Behavior, 15, 167–192.CrossRefGoogle Scholar
  25. Davis, R. B., & Vinner, S. (1986). The notion of limit: Some seemingly unavoidable misconception stages. Journal of Mathematical Behavior, 5, 281–303.Google Scholar
  26. Dawkins, P., & Roh, K. (2016). Promoting metalinguistic and metamathematical reasoning in proof-oriented mathematics courses: A method and a framework. International Journal of Research in Undergraduate Mathematics Education, 2, 197–222.CrossRefGoogle Scholar
  27. Dorier, J.-L. (1995). Meta level in the teaching of unifying and generalizing concepts in mathematics. Educational Studies in Mathematics, 29, 175–197.CrossRefGoogle Scholar
  28. Dorier, J.-L. (Ed.). (2000). On the Teaching of Linear Algebra. Mathematics Education Library, 23. Dordrecht: Kluwer.Google Scholar
  29. Durand-Guerrier, V., & Arsac, G. (2005). An epistemological and didactic study of a specific calculus reasoning rule. Educational Studies in Mathematics, 60, 149–172.CrossRefGoogle Scholar
  30. Euclid. (1908). The thirteen books of Euclid’s Elements vol. III (translated by T.L. Heath). Cambridge: Cambridge University Press.Google Scholar
  31. Fischbein, E., & Mariotti, M. A. (1997). Defining in classroom activities. Educational Studies in Mathematics, 34, 219–248.CrossRefGoogle Scholar
  32. González-Martín, A., Bloch, I., Durand-Guerrier, V., & Maschietto, M. (2014). Didactic Situations and Didactical Engineering in university mathematics: cases from the study of Calculus and proof. Research in Mathematics Education, 16(2), 117–134.CrossRefGoogle Scholar
  33. Hache, C., & Robert, A. (2013). Why and how to understand what is at stake in a mathematics class. In F. Vandebrouck (Ed.), Mathematics classrooms: Students’ activities and teachers’ practices (pp. 23–74). Rotterdam: Sense Publishers.Google Scholar
  34. Jablonka, E., Ashjari, H., & Bergsten, C. (2017). “Much palaver about greater than zero and such stuff” – First year engineering students’ recognition of university mathematics. International Journal of Research in Undergraduate Mathematics Education, 3(1), 69–107.CrossRefGoogle Scholar
  35. Job, P. (2011). Etude du rapport à la notion de définition comme obstacle épistémologique du caractère lakatosien de la notion de limite par la méthodologie des situations fondamentales/adidactique (unpublished dissertation). Liège: Université de Liège.Google Scholar
  36. Lakatos, I. (1976). Proofs and refutations. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  37. Larsen, S., & Swinyard, C. (2012). Coming to understand the formal definition of limit: Insights gained from engaging students in reinvention. Journal for Research in Mathematics Education, 43(4), 465–493.CrossRefGoogle Scholar
  38. Lecorre, T. (2016). Des conditions de conception d’une ingénierie relative à la définition de la notion de limite (unpublished dissertation). Grenoble (France): Université Grenoble Alpes.Google Scholar
  39. Leibniz, G. W. (1859). Leibniz mathematische Schriften (herausgegeben von G. Gerhardt), Erste Abtheilung, Band IV. Halle: Schmidt.Google Scholar
  40. Mamona-Downs, J. (2001). Letting the intuitive bear on the formal: A didactical approach for the understanding of the limit of a sequence. Educational Studies in Mathematics, 48, 259–288.CrossRefGoogle Scholar
  41. Martin, J., Oehrtman, M., & Swinyard, C. (2014). Problems and solutions in students’ reinvention of a definition for sequence convergence. Journal of Mathematical Behavior, 33, 131–148.CrossRefGoogle Scholar
  42. Oerhtman, M. (2009). Collapsing dimensions, physical limitation, and other student metaphors for limit concepts. Journal for Research in Mathematics Education, 40(4), 396–426.Google Scholar
  43. Ouvrier-Buffet, C. (2006). Exploring mathematical definition construction processes. Educational Studies in Mathematics, 63, 259–282.CrossRefGoogle Scholar
  44. Ouvrier-Buffet, C. (2011). A mathematical experience involving defining processes: in-action definitions and zero-definitions. Educational Studies in Mathematics, 76, 165–182.CrossRefGoogle Scholar
  45. Ouvrier-Buffet, C. (2013). Modélisation de l’activité de définition en mathématiques et de sa dialectique avec la preuve. Etude épistémologique et enjeux didactiques (unpublished habilitation thesis). Paris: Université Paris Diderot – Paris VII.Google Scholar
  46. Pinto, M., & Tall, D. (2002). Building formal mathematics on visual imagery: a case study and a theory. For the Learning of Mathematics, 22(1), 2–10.Google Scholar
  47. Przenioslo, M. (2005). Introducing the concept of convergence of a sequence in secondary school. Educational Studies in Mathematics, 60, 71–93.CrossRefGoogle Scholar
  48. Robert, A. (1982a). L’acquisition de la notion de convergence des suites numériques dans l’enseignement supérieur (unpublished dissertation). Paris: Université Paris VII.Google Scholar
  49. Robert, A. (1982b). L’acquisition de la notion de convergence des suites numériques dans l’enseignement supérieur. Recherches en Didactique des Mathématiques, 3(3), 307–341.Google Scholar
  50. Robert, A. (1983). L’enseignement de la convergence des suites numériques en DEUG. Bulletin de l’APMEP, 34, 432–448.Google Scholar
  51. Robert, A. (1998). Outils d’analyse des contenus mathématiques à enseigner au lycée et à l’université. Recherches en Didactique des Mathématiques, 18(2), 139–190.Google Scholar
  52. Robert, A., & Schwarzenberger, R. (1991). Research in teaching and learning mathematics at an advanced level. In D. Tall (Ed.), Advanced mathematical thinking (pp. 127–139). Boston: Kluwer Academic Publications.Google Scholar
  53. Roh, K. H., & Lee, Y. H. (2017). Designing tasks of introductory real analysis to bridge the gap between student’s intuition and mathematical rigor: the case of the convergence of a sequence. International Journal of Research in Undergraduate Mathematics Education, 3(1), 34–68.CrossRefGoogle Scholar
  54. Schneider, M. (2008). Entre recherche et développement : quel choix de valeurs pour l’ingénierie curriculaire ? In J. Traglova, G. Aldon, G. Gheudet, & Y. Matheron (Eds.), Ressources pour l’enseignement des mathématiques : conception, usage, partage (pp. 21–36). Lyon: INRP.Google Scholar
  55. Stephan, M., & Rasmussen, C. (2002). Classroom mathematical practices in differential equations. Journal of Mathematical Behavior, 21, 459–490.CrossRefGoogle Scholar
  56. Swinyard, C. (2011). Reinventing the formal definition of limit: the case of Amy and Mike. The Journal of Mathematical Behavior, 30, 93–114.CrossRefGoogle Scholar
  57. Tall, D. (Ed.). (1991). Advanced mathematical thinking. Boston: Kluwer Academic Publications.Google Scholar
  58. Vinner, S. (1991). The role of definitions in teaching and learning of mathematics. In D. Tall (Ed.), Advanced mathematical thinking (pp. 65–81). Boston: Kluwer Academic Publications.Google Scholar
  59. Volkert, K. (1987). Die Geschichte der pathologischen Funktionen – Ein Beitrag zur Entstehung der mathematischen Methodologie. Archive for History of Exact Sciences, 73, 193–232.CrossRefGoogle Scholar
  60. Watson, A., & Mason, J. (2001). Getting students to create boundary examples. MSOR Connections, 1, 9–11.Google Scholar
  61. Yackel, E. (2002). What we can learn from analyzing the teacher’s role in collective argumentation. The Journal of Mathematical Behavior, 21, 423–440.CrossRefGoogle Scholar
  62. Zandieh, M., & Rasmussen, C. (2010). Defining as a mathematical activity: A framework for characterizing progress from informal to more formal ways of reasoning. Journal of Mathematical Behavior, 29, 57–75.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.ParisFrance
  2. 2.Laboratoire de Didactique André Revuz (EA 4433), UA, UCP, UPD, UPEC, URNUFR de Mathématiques, Université Paris Diderot, bâtiment Sophie GermainParis Cedex 13France
  3. 3.ESPE de ParisParisFrance

Personalised recommendations