Advertisement

Adaptive Human Behavior and Physiology

, Volume 4, Issue 4, pp 387–399 | Cite as

Social Working Memory Predicts Social Network Size in Humans

  • Sonia A. Krol
  • Meghan L. Meyer
  • Matthew D. Lieberman
  • Jennifer A. Bartz
ORIGINAL ARTICLE

Abstract

Objectives

The Social Brain Hypothesis posits a quantitative relationship between primate neocortex size and social network size. However, the precise social-cognitive mechanisms that drive this relationship remain elusive. Social Working Memory (SWM)—the ability to actively maintain and manipulate social information—has been proposed as a potential mechanism, but, to date, has not been linked to network size. Here, we explicitly tested this association.

Methods

In Study 1, 125 participants completed a SWM task and reported on their social networks. In Study 2, 25 participants underwent fMRI during the SWM task and reported on their social networks.

Results

As predicted, in Study 1, SWM performance was significantly associated with social network size and, specifically, “Sympathy Group” size (i.e., the size of one’s core friend group). In Study 2, we conceptually replicated and extended this effect by showing that neural activity in the dorsal medial prefrontal cortex and medial prefrontal cortex engaged during SWM (vs. non-social working memory) was associated with individual variation in Sympathy Group size.

Conclusions

Taken together, these findings provide the first evidence that SWM constrains social network size, and suggest that SWM may be one social cognitive competency that underlies the Social Brain Hypothesis. In addition, whereas prior work investigating the Social Brain Hypothesis has largely focused on correlating brain structure size with social network size, to our knowledge, this is the first functional imaging evidence supporting the Social Brain Hypothesis.

Keywords

Social working memory Social networks Social brain hypothesis Neuroimaging Evolution Social bonds Individual differences 

Notes

Acknowledgements

We thank Celine Coletta, Costanza Graziani, Emily Ower, Irene Giannis, Jocelyn Ho, Elizabeth Pierce, and the Ahmanson-Lovelace Brain Mapping Center for data collection assistance.

Study 1 was supported by a grant from the Natural Sciences and Engineering Research Council of Canada awarded to JAB and Study 2 was supported by a National Institute of Mental Health Pre-doctoral Ruth L. Kirschstein National Research Service Award awarded to MLM.

Author Contributions

The study concept and designs were developed by S. A. Krol and J. A. Bartz (Study 1) and by M. L. Meyer and M. D. Lieberman (Study 2). Testing and data collection was performed by S. A. Krol (Study 1) and M. L. Meyer (Study 2). S. A. Krol and J. A. Bartz performed the data analyses and interpretation for Study 1. M. L. Meyer performed the data analyses for Study 2 and M. L. Meyer and M. D. Lieberman performed interpretation for Study 2. S. A. Krol and M. L. Meyer drafted the manuscript, and J. A. Bartz and M. D. Lieberman provided critical revisions. All authors approved the final version of the paper for submission.

Compliance with Ethical Standards

Declaration of Conflicting Interests

The authors declare no conflicting interests.

Supplementary material

40750_2018_100_MOESM1_ESM.docx (25 kb)
ESM 1 (DOCX 25 kb)

References

  1. Ashburner, J. (2007). A fast diffeomorphic image registration algorithm. NeuroImage, 38(1), 95–113.  https://doi.org/10.1016/j.neuroimage.2007.07.007.CrossRefGoogle Scholar
  2. Barnes, J. A. (1954). Class and committees in a Norwegian Island parish. Human Relations, 7(1), 39–58.  https://doi.org/10.1177/001872675400700102.CrossRefGoogle Scholar
  3. Dunbar, R. I. M. (1992). Neocortex size as a constraint on group size in primates. Journal of Human Evolution, 22(6), 469–493.  https://doi.org/10.1016/0047-2484(92)90081-J.CrossRefGoogle Scholar
  4. Dunbar, R. I. (1993). Coevolution of neocortical size, group size and language in humans. Behavioral and Brain Sciences, 16(04), 681–694.CrossRefGoogle Scholar
  5. Dunbar, R. I. (1998). The social brain hypothesis. Brain, 9(10), 178–190.Google Scholar
  6. Dunbar, R. I. M. (2014). The social brain: psychological underpinnings and implications for the structure of organizations. Current Directions in Psychological Science, 23(2), 109–114.  https://doi.org/10.1177/0963721413517118.CrossRefGoogle Scholar
  7. Dunbar, R. I. M., & Spoors, M. (1995). Social networks, support cliques, and kinship. Human Nature, 6(3), 273–290.  https://doi.org/10.1007/BF02734142.CrossRefGoogle Scholar
  8. Funder, D. C., Levine, J. M., Mackie, D. M., Morf, C. C., Sansone, C., Vazire, S., & West, S. G. (2014). Improving the dependability of research in personality and social psychology: recommendations for research and educational practice. Personality and Social Psychology Review, 18(1), 3–12.  https://doi.org/10.1177/1088868313507536.CrossRefGoogle Scholar
  9. Gusnard, D. A., Raichle, M. E., & Raichle, M. E. (2001). Searching for a baseline: functional imaging and the resting human brain. Nature Reviews. Neuroscience, 2(10), 685–694.  https://doi.org/10.1038/35094500.CrossRefGoogle Scholar
  10. Hill, R. A., & Dunbar, R. I. (2003). Social network size in humans. Human Nature, 14(1), 53–72.CrossRefGoogle Scholar
  11. Kanai, R., Bahrami, B., Roylance, R., & Rees, G. (2012). Online social network size is reflected in human brain structure. Proceedings of the Royal Society B: Biological Sciences, 279(1732), 1327–1334.  https://doi.org/10.1098/rspb.2011.1959.CrossRefGoogle Scholar
  12. Lewis, P. A., Rezaie, R., Brown, R., Roberts, N., & Dunbar, R. I. M. (2011). Ventromedial prefrontal volume predicts understanding of others and social network size. NeuroImage, 57(4), 1624–1629.  https://doi.org/10.1016/j.neuroimage.2011.05.030.CrossRefGoogle Scholar
  13. Meyer, M. L., & Lieberman, M. D. (2012). Social working memory: neurocognitive networks and directions for future research. Frontiers in Psychology, 3, 571.  https://doi.org/10.3389/fpsyg.2012.00571.CrossRefGoogle Scholar
  14. Meyer, M. L., Spunt, R. P., Berkman, E. T., Taylor, S. E., & Lieberman, M. D. (2012). Evidence for social working memory from a parametric functional MRI study. Proceedings of the National Academy of Sciences, 109(6), 1883–1888.  https://doi.org/10.1073/pnas.1121077109.CrossRefGoogle Scholar
  15. Meyer, M. L., Taylor, S. E., & Lieberman, M. D. (2015). Social working memory and its distinctive link to social cognitive ability: an fMRI study. Social Cognitive and Affective Neuroscience, 10, 1338–1347.  https://doi.org/10.1093/scan/nsv065.CrossRefGoogle Scholar
  16. Miyake, A., & Shah, P. (Eds.). (1999). Models of working memory: mechanisms of active maintenance and executive control. Cambridge: Cambridge University Press.Google Scholar
  17. Mumford, J. A., & Nichols, T. (2008). Power calculation for group fMRI studies accounting for arbitrary design and temporal autocorrelation. NeuroImage, 39(1), 261–268.  https://doi.org/10.1016/j.neuroimage.2007.07.061.CrossRefGoogle Scholar
  18. Powell, J. L., Lewis, P. A., Dunbar, R. I. M., García-Fiñana, M., & Roberts, N. (2010). Orbital prefrontal cortex volume correlates with social cognitive competence. Neuropsychologia, 48(12), 3554–3562.  https://doi.org/10.1016/j.neuropsychologia.2010.08.004.CrossRefGoogle Scholar
  19. Stiller, J., & Dunbar, R. I. M. (2007). Perspective-taking and memory capacity predict social network size. Social Networks, 29(1), 93–104.  https://doi.org/10.1016/j.socnet.2006.04.001.CrossRefGoogle Scholar
  20. Swann Jr, W. B., De La Ronde, C., & Hixon, J. G. (1994). Authenticity and positivity strivings in marriage and courtship. Journal of personality and social psychology, 66(5), 857.CrossRefGoogle Scholar
  21. Swann Jr, W. B., Rentfrow, P. J., & Gosling, S. D. (2003). The precarious couple effect: Verbally inhibited men+ critical, disinhibited women= bad chemistry. Journal of Personality and Social Psychology, 85(6), 1095.CrossRefGoogle Scholar
  22. Tabachnick, B. G., & Fidell, L. S. (2007). Using multivariate statistics (5th ed.). Boston: Pearson Education Inc. Retrieved from https://scholar.google.com/scholar_lookup?title=Using%20multivariate%20statistics&author=Tabachnick&publication_year=2007.Google Scholar
  23. Wager, T. D., & Nichols, T. E. (2003). Optimization of experimental design in fMRI: a general framework using a genetic algorithm. Neuroimage, 18(2), 293-309.CrossRefGoogle Scholar
  24. Zhou, W.-X., Sornette, D., Hill, R. A., & Dunbar, R. I. M. (2005). Discrete hierarchical organization of social group sizes. Proceedings of the Royal Society B: Biological Sciences, 272(1561), 439–444.  https://doi.org/10.1098/rspb.2004.2970.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Sonia A. Krol
    • 1
  • Meghan L. Meyer
    • 2
  • Matthew D. Lieberman
    • 3
  • Jennifer A. Bartz
    • 1
  1. 1.Department of PsychologyMcGill UniversityMontrealCanada
  2. 2.Department of Psychological and Brain SciencesDartmouth CollegeHanoverUSA
  3. 3.Department of PsychologyUniversity of California, Los AngelesLos AngelesUSA

Personalised recommendations