Advertisement

Adaptive Human Behavior and Physiology

, Volume 4, Issue 1, pp 21–41 | Cite as

Inhibited Power Motivation is Associated with the Facial Width-to-Height Ratio in Females

  • Kevin T. Janson
  • Kira Bleck
  • Julia Fenkl
  • Lea T. Riegl
  • Franziska Jägel
  • Martin G. Köllner
ORIGINAL ARTICLE

Abstract

The inhibited power motive is a disposition for obtaining a functional influence on others (Schultheiss 2008) and characterized by a high implicit need for Power (n Power) and high activity inhibition (AI; McClelland Journal of Abnormal Psychology, 88(2), 182–190, 1979). Organizational effects of gonadal steroid hormones on the brain during prenatal development affect the emerging n Power (Schultheiss and Zimni Adaptive Human Behavior and Physiology, 1(4), 387–407, 2015) but it is unknown whether there are similar associations during puberty, a second phase of endocrine organization (Schulz et al. Hormones and Behavior, 55(5), 597–604, 2009). In two studies (combined for analyses; total N = 213, after exclusions), we investigated this relationship using the facial width-to-height ratio (fWHR; Weston et al. PloS One, 2(8), e710, 2007), assessed via anthropometry, as a marker of organizational hormone effects during puberty in a cross-sectional, correlational design. N Power and AI were measured via Picture Story Exercise (PSE; McClelland et al. Psychological Review, 96, 690–702, 1989). Controlling for BMI and age in a multiple regression analysis predicting fWHR, we found a significant n Power x AI-effect, B = 0.15, SE = 0.07, t(207) = 2.03, p = .04, ∆R 2 = .02. N Power and fWHR approached a marginally significant positive association, when AI was high (+1SD; B = 0.16, SE = 0.10, t(207) = 1.64, p = .10) and showed a negative but insignificant association, when AI was low (−1SD; B = −0.14, SE = 0.10, t(207) = −1.40, p = .16). After adding gender to the model on an exploratory basis, we found a significant n Power x AI x Gender-effect (B = 0.34, SE = 0.17, t(203) = 2.00, p = .05, ∆R 2 = .02), predominantly driven by a positive effect of the inhibited power motive in females, B = 0.28, SE = 0.13, t(55) = 2.24, p = .03, ∆R 2 = .08. Compared with past research, this finding was unexpected since fWHR is commonly linked to various criteria in males. Implications for the understanding of the development of n Power are discussed, respecting the limitations of our design.

Keywords

Implicit motives Power motivation Facial width-to-height ratio Puberty Organizational hormone effects Picture story exercise 

Notes

Author Contributions

Author KTJ wrote the manuscript, MGK designed Study 1 and 2 and refined the manuscript. Measurement protocols for fWHR were designed by KB, KTJ, and MGK for Study 1, and by KB, JF, FJ, and MGK for Study 2. KTJ and LTR recruited participants and conducted the experiment in Study 1 with assistance of KB. KB, JF, and FJ recruited participants and conducted the experiment in Study 2. PSEs were coded by KTJ and LTR in Study 1, and by KB and JF in Study 2. KTJ undertook the statistical analysis, assisted by MGK. All authors contributed to and have approved the final manuscript.

Compliance with Ethical Standards

All conducted experiments comply with the current laws of Germany. All participants gave their informed consent prior to their inclusion in the studies. The manuscript does not contain clinical studies or patient data.

Conflict of Interest

The authors had no financial relationship with the organization that sponsored the research and no conflict of interest.

Open Science

Reproducible analysis scripts for all reported results, the data files, as well as the output files are available at the Open Science Framework (https://osf.io/3gtm6/).

References

  1. Aiken, L. S., & West, S. G. (1991). Multiple regression: testing and interpreting interactions. Thousand Oaks: Sage.Google Scholar
  2. Barrett, R. L., & Harris, E. F. (1993). Anabolic steroids and craniofacial growth in the rat. The Angle Orthodontist, 63(4), 289–298. doi: 10.1043/0003-3219(1993)063<0289:ASACGI>2.0.CO;2.Google Scholar
  3. Baughan, B., Demirjian, A., Levesque, G. Y., & Lapalme-Chaput, L. (1979). The pattern of facial growth before and during puberty, as shown by French-Canadian girls. Annals of Human Biology, 6(1), 59–76. doi: 10.1080/03014467900003371.CrossRefGoogle Scholar
  4. Baum, M. J. (2002). Neuroendocrinology of sexual behavior in the male. In J. B. Becker, S. M. Breedlove, D. Crews, & M. M. McCarthy (Eds.), Behavioral endocrinology (2nd ed., pp. 153–204). Cambridge: MIT Press.Google Scholar
  5. Biernat, M. (1989). Motives and values to achieve: different constructs with different effects. Journal of Personality, 57(1), 69–95. doi: 10.1111/j.1467-6494.1989.tb00761.x.CrossRefGoogle Scholar
  6. Bird, B. M., Cid Jofré, V. S., Geniole, S. N., Welker, K. M., Zilioli, S., Maestripieri, D., et al. (2016). Does the facial width-to-height ratio map onto variability in men's testosterone concentrations? Evolution and Human Behavior, 37(5), 392–398. doi: 10.1016/j.evolhumbehav.2016.03.004.CrossRefGoogle Scholar
  7. Borsboom, D., Mellenbergh, G. J., & van Heerden, J. (2004). The concept of validity. Psychological Review, 111(4), 1061–1071. doi: 10.1037/0033-295X.111.4.1061.CrossRefGoogle Scholar
  8. Bosson, J. K., Swann Jr., W. B., & Pennebaker, J. W. (2000). Stalking the perfect measure of implicit self-esteem: the blind men and the elephant revisited? Journal of Personality and Social Psychology, 79(4), 631–643. doi: 10.1037/0022-3514.79.4.631.CrossRefGoogle Scholar
  9. Brown, W. M., Hines, M., Fane, B. A., & Breedlove, S. M. (2002). Masculinized finger length patterns in human males and females with congenital adrenal hyperplasia. Hormones and Behavior, 42(4), 380–386. doi: 10.1006/hbeh.2002.1830.CrossRefGoogle Scholar
  10. Brunstein, J. C., & Hoyer, S. (2002). Implizites versus explizites Leistungsstreben : Befunde zur Unabhängigkeit zweier Motivationssysteme [Implicit versus explicit achievement strivings: Empirical evidence of the independence of two motivational systems]. Zeitschrift für Pädagogische Psychologie, 16, 51–62.CrossRefGoogle Scholar
  11. Carré, J. M., & McCormick, C. M. (2008). In your face: facial metrics predict aggressive behaviour in the laboratory and in varsity and professional hockey players. Proceedings of the Royal Society of London B: Biological Sciences, 275(1651), 2651–2656. doi: 10.1098/rspb.2008.0873.CrossRefGoogle Scholar
  12. Carré, J. M., McCormick, C. M., & Mondloch, C. J. (2009). Facial structure is a reliable cue of aggressive behavior. Psychological Science, 20(10), 1194–1198. doi: 10.1111/j.1467-9280.2009.02423.x.CrossRefGoogle Scholar
  13. Cohen, J. (1992). A power primer. Psychological Bulletin, 112(1), 155–159. doi: 10.1037/0033-2909.112.1.155.CrossRefGoogle Scholar
  14. de Vries, G. J., Fields, C. T., Peters, N. V., Whylings, J., & Paul, M. J. (2014). Sensitive periods for hormonal programming of the brain. In S. L. Andersen & D. S. Pine (Eds.), The neurobiology of childhood (pp. 79–108). Berlin: Springer Berlin Heidelberg.CrossRefGoogle Scholar
  15. deCharms, R., Morrison, H. W., Reitman, W., & McClelland, D. C. (1955). Behavioral correlates of directly and indirectly measured achievement motivation. In D. C. McClelland (Ed.), Studies in motivation (pp. 414–423). New York: Appleton-Century-Crofts.Google Scholar
  16. Donhauser, P. W., Rösch, A. G., & Schultheiss, O. C. (2015). The implicit need for power predicts recognition speed for dynamic changes in facial expressions of emotion. Motivation and Emotion, 39(5), 714–721. doi: 10.1007/s11031-015-9484-z.CrossRefGoogle Scholar
  17. Dutton, D. G., & Strachan, C. E. (1987). Motivational needs for power and spouse-specific assertiveness in assaultive and nonassaultive men. Violence and Victims, 2(3), 145–156.Google Scholar
  18. Evuarherhe, O., Leggett, J. D., Waite, E. J., Kershaw, Y. M., Atkinson, H. C., & Lightman, S. L. (2009). Organizational role for pubertal androgens on adult hypothalamic-pituitary-adrenal sensitivity to testosterone in the male rat. The Journal of Physiology, 587(12), 2977–2985. doi: 10.1113/jphysiol.2008.168393.CrossRefGoogle Scholar
  19. Frisch, M., & Schultheiss, O. C. (2012). PSECoder software. Erlangen: Author.Google Scholar
  20. Geniole, S. N., Keyes, A. E., Carré, J. M., & McCormick, C. M. (2014). Fearless dominance mediates the relationship between the facial width-to-height ratio and willingness to cheat. Personality and Individual Differences, 57, 59–64. doi: 10.1016/j.paid.2013.09.023.CrossRefGoogle Scholar
  21. Geniole, S. N., Denson, T. F., Dixson, B. J., Carré, J. M., & McCormick, C. M. (2015). Evidence from meta-analyses of the facial width-to-height ratio as an evolved cue of threat. PloS One, 10(7), e0132726. doi: 10.1371/journal.pone.0132726.CrossRefGoogle Scholar
  22. Geschwind, N., & Galaburda, A. M. (1985). Cerebral lateralization: Biological mechanisms, associations, and pathology: i. a hypothesis and a program for research. Archives of Neurology, 42(5), 428–459. doi: 10.1001/archneur.1985.04060050026008.CrossRefGoogle Scholar
  23. Goetz, S. M. M., Shattuck, K. S., Miller, R. M., Campbell, J. A., Lozoya, E., Weisfeld, G. E., et al. (2013). Social status moderates the relationship between facial structure and aggression. Psychological Science, 24(11), 2329–2334. doi: 10.1177/0956797613493294.CrossRefGoogle Scholar
  24. Grumbach, M. M. (2000). Estrogen, bone, growth and sex: a sea change in conventional wisdom. Journal of Pediatric Endocrinology and Metabolism, 13, 1439–1456. doi: 10.1515/jpem-2000-s619.CrossRefGoogle Scholar
  25. Hall, J. L., Stanton, S. J., & Schultheiss, O. C. (2010). Biopsychological and neural processes of implicit motivation. In O. C. Schultheiss & J. C. Brunstein (Eds.), Implicit motives (pp. 279–307). New York: Oxford University Press.CrossRefGoogle Scholar
  26. Haselhuhn, M. P., & Wong, E. M. (2011). Bad to the bone: facial structure predicts unethical behaviour. Proceedings of the Royal Society of London B: Biological Sciences. doi: 10.1098/rspb.2011.1193.
  27. Haselhuhn, M. P., Wong, E. M., Ormiston, M. E., Inesi, M. E., & Galinsky, A. D. (2014). Negotiating face-to-face: men’s facial structure predicts negotiation performance. The Leadership Quarterly, 25(5), 835–845. doi: 10.1016/j.leaqua.2013.12.003.CrossRefGoogle Scholar
  28. Haselhuhn, M. P., Ormiston, M. E., & Wong, E. M. (2015). Men’s facial width-to-height ratio predicts aggression: a meta-analysis. PloS One, 10(4), e0122637. doi: 10.1371/journal.pone.0122637.CrossRefGoogle Scholar
  29. Hehman, E., Leitner, J. B., & Freeman, J. B. (2014). The face–time continuum: lifespan changes in facial width-to-height ratio impact aging-associated perceptions. Personality and Social Psychology Bulletin, 40(12), 1624–1636. doi: 10.1177/0146167214552791.CrossRefGoogle Scholar
  30. Hodges-Simeon, C. R., Hanson Sobraske, K. N., Samore, T., Gurven, M., & Gaulin, S. J. C. (2016). Facial width-to-height ratio (fWHR) is not associated with adolescent testosterone levels. PloS One, 11(4), e0153083. doi: 10.1371/journal.pone.0153083.CrossRefGoogle Scholar
  31. Hofer, J., Chasiotis, A., & Campos, D. (2006). Congruence between social values and implicit motives: effects on life satisfaction across three cultures. European Journal of Personality, 20(4), 305–324. doi: 10.1002/per.590.CrossRefGoogle Scholar
  32. Hönekopp, J., & Watson, S. (2011). Meta-analysis of the relationship between digit-ratio 2D:4D and aggression. Personality and Individual Differences, 51(4), 381–386. doi: 10.1016/j.paid.2010.05.003.CrossRefGoogle Scholar
  33. Hönekopp, J., Bartholdt, L., Beier, L., & Liebert, A. (2007). Second to fourth digit length ratio (2D:4D) and adult sex hormone levels: new data and a meta-analytic review. Psychoneuroendocrinology, 32(4), 313–321. doi: 10.1016/j.psyneuen.2007.01.007.CrossRefGoogle Scholar
  34. Huettel, S. A., Song, A. W., & McCarthy, G. (2004). Functional magnetic resonance imaging. Sunderland: Sinauer Associates.Google Scholar
  35. Juul, A. (2001). The effects of oestrogens on linear bone growth. Human Reproduction, 7(3), 303–313. doi: 10.1093/humupd/7.3.303.CrossRefGoogle Scholar
  36. Klinger, E. (1967). Modeling effects on achievement imagery. Journal of Personality and Social Psychology, 7, 49–62. doi: 10.1037/h0024936.CrossRefGoogle Scholar
  37. Köllner, M. G., & Schultheiss, O. C. (2014). Meta-analytic evidence of low convergence between implicit and explicit measures of the needs for achievement, affiliation, and power. Frontiers in Psychology, 5(826). doi: 10.3389/fpsyg.2014.00826.
  38. Kramer, R. S. S. (2016). Within-person variability in men’s facial width-to-height ratio. PeerJ, 4, e1801. doi: 10.7717/peerj.1801.CrossRefGoogle Scholar
  39. Kramer, R. S. S. (2017). Sexual dimorphism of facial width-to-height ratio in human skulls and faces: a meta-analytical approach. Evolution and Human Behavior, 38(3), 414–420. doi: 10.1016/j.evolhumbehav.2016.12.002.CrossRefGoogle Scholar
  40. Kramer, R. S. S., Jones, A. L., & Ward, R. (2012). A lack of sexual dimorphism in width-to-height ratio in white European faces using 2D photographs, 3D scans, and anthropometry. PloS One, 7(8), e42705. doi: 10.1371/journal.pone.0042705.CrossRefGoogle Scholar
  41. Langens, T. A. (2010). Activity inhibition. In O. C. Schultheiss & J. C. Brunstein (Eds.), Implicit motives (pp. 89–115). New York: Oxford University Press.CrossRefGoogle Scholar
  42. Langens, T. A., & Stucke, T. S. (2005). Stress and mood: the moderating role of activity inhibition. Journal of Personality, 73(1), 47–78. doi: 10.1111/j.1467-6494.2004.00304.x.CrossRefGoogle Scholar
  43. Lansing, J. B., & Heyns, R. W. (1959). Need affiliation and frequency of four types of communication. The Journal of Abnormal and Social Psychology, 58(3), 365–372. doi: 10.1037/h0045906.CrossRefGoogle Scholar
  44. Lefevre, C. E., & Lewis, G. J. (2014). Perceiving aggression from facial structure: further evidence for a positive association with facial width-to-height ratio and masculinity, but not for moderation by self-reported dominance. European Journal of Personality, 28(6), 530–537. doi: 10.1098/rsbl.2014.0729.Google Scholar
  45. Lefevre, C. E., Lewis, G. J., Bates, T. C., Dzhelyova, M., Coetzee, V., Deary, I. J., et al. (2012). No evidence for sexual dimorphism of facial width-to-height ratio in four large adult samples. Evolution and Human Behavior, 33(6), 623–627. doi: 10.1016/j.evolhumbehav.2012.03.002.CrossRefGoogle Scholar
  46. Lefevre, C. E., Lewis, G. J., Perrett, D. I., & Penke, L. (2013). Telling facial metrics: facial width is associated with testosterone levels in men. Evolution and Human Behavior, 34(4), 273–279. doi: 10.1016/j.evolhumbehav.2013.03.005.CrossRefGoogle Scholar
  47. Lefevre, C. E., Wilson, V. A. D., Morton, F. B., Brosnan, S. F., Paukner, A., & Bates, T. C. (2014). Facial width-to-height ratio relates to alpha status and assertive personality in capuchin monkeys. PloS One, 9(4), e93369. doi: 10.1371/journal.pone.0093369.CrossRefGoogle Scholar
  48. Lutchmaya, S., Baron-Cohen, S., Raggatt, P., Knickmeyer, R., & Manning, J. T. (2004). 2nd to 4th digit ratios, fetal testosterone and estradiol. Early Human Development, 77, 23–28. doi: 10.1016/j.earlhumdev.2003.12.002.CrossRefGoogle Scholar
  49. Manning, J. T. (2002). Digit ratio: a pointer to fertility, behavior, and health. Piscataway: Rutgers University Press.Google Scholar
  50. Manning, J. T. (2011). Resolving the role of prenatal sex steroids in the development of digit ratio. Proceedings of the National Academy of Sciences, 108(39), 16143–16144. doi: 10.1073/pnas.1113312108.CrossRefGoogle Scholar
  51. Mazur, A., Susman, E. J., & Edelbrock, S. (1997). Sex difference in testosterone response to a video game contest. Evolution and Human Behavior, 18(5), 317–326. doi: 10.1016/S1090-5138(97)00013-5.CrossRefGoogle Scholar
  52. McClelland, D. C. (1975). Power: the inner experience. New York: Irvington Publishers.Google Scholar
  53. McClelland, D. C. (1979). Inhibited power motivation and high blood pressure in men. Journal of Abnormal Psychology, 88(2), 182–190. doi: 10.1037/0021-843X.88.2.182.CrossRefGoogle Scholar
  54. McClelland, D. C. (1987). Human motivation. New York: Cambridge University Press.Google Scholar
  55. McClelland, D. C. (1989). Motivational factors in health and disease. American Psychologist, 44(4), 675–683. doi: 10.1037/0003-066x.44.4.675.CrossRefGoogle Scholar
  56. McClelland, D. C., & Boyatzis, R. E. (1982). Leadership motive pattern and long-term success in management. Journal of Applied Psychology, 67(6), 737–743. doi: 10.1037/0021-9010.67.6.737.CrossRefGoogle Scholar
  57. McClelland, D. C., & Franz, C. E. (1992). Motivational and other sources of work accomplishments in mid-life: a longitudinal study. Journal of Personality, 60(4), 679–707. doi: 10.1111/j.1467-6494.1992.tb00270.x.CrossRefGoogle Scholar
  58. McClelland, D. C., & Pilon, D. A. (1983). Sources of adult motives in patterns of parent behavior in early childhood. Journal of Personality and Social Psychology, 44(3), 564–574. doi: 10.1037/0022-3514.44.3.564.CrossRefGoogle Scholar
  59. McClelland, D. C., & Watson Jr., R. I. (1973). Power motivation and risk-taking behavior. Journal of Personality, 41(1), 121–139.CrossRefGoogle Scholar
  60. McClelland, D. C., Koestner, R., & Weinberger, J. (1989). How do self-attributed and implicit motives differ? Psychological Review, 96, 690–702. doi: 10.1037/0033-295x.96.4.690.CrossRefGoogle Scholar
  61. Nelson, R. J., & Trainor, B. C. (2007). Neural mechanisms of aggression. Nature Reviews Neuroscience, 8(7), 536–546. doi: 10.1038/nrn2174.CrossRefGoogle Scholar
  62. Niedermeyer, E., & da Silva, F. L. (2005). Electroencephalography: basic principles, clinical applications, and related fields. Philadelphia: Lippincott Williams & Wilkins.Google Scholar
  63. Ohlsson, C., Bengtsson, B.-Å., Isaksson, O. G. P., Andreassen, T. T., & Slootweg, M. C. (1998). Growth hormone and bone. Endocrine Reviews, 19(1), 55–79. doi: 10.1210/edrv.19.1.0324.Google Scholar
  64. Osborne, J. W. (2013). Best practices in data cleaning: a complete guide to everything you need to do before and after collecting your data. Thousand Oaks: Sage Publications.CrossRefGoogle Scholar
  65. Palmer-Hague, J. L., Zilioli, S., Jagore, J., & DeLecce, T. L. (2016). Body mass index predicts fighting ability in female UFC fighters, but facial width-to-height ratio may not. Adaptive Human Behavior and Physiology, 2(3), 185–194. doi: 10.1007/s40750-015-0035-3.CrossRefGoogle Scholar
  66. Phoenix, C. H., Goy, R. W., Gerall, A. A., & Young, W. C. (1959). Organizing action of prenatally administered testosterone propionate on the tissues mediating mating behavior in the female guinea pig. Endocrinology, 65(3), 369–382. doi: 10.1210/endo-65-3-369.CrossRefGoogle Scholar
  67. Pratt, T. C., Turanovic, J. J., & Cullen, F. T. (2016). Revisiting the criminological censequences of exposure to fetal testosterone: a meta-analysis of the 2D:4D digit ratio. Criminology, 54(4), 587–620. doi: 10.1111/1745-9125.12115.CrossRefGoogle Scholar
  68. Pueschel, O., Schulte, D., & Michalak, J. (2011). Be careful what you strive for: the significance of motive–goal congruence for depressivity. Clinical Psychology & Psychotherapy, 18(1), 23–33. doi: 10.1002/cpp.697.CrossRefGoogle Scholar
  69. Romeo, R. D., Lee, S. J., Chhua, N., McPherson, C. R., & McEwen, B. S. (2004). Testosterone cannot activate an adult-like stress response in prepubertal male rats. Neuroendocrinology, 79(3), 125–132. doi: 10.1159/000077270.CrossRefGoogle Scholar
  70. Russell, G. F. (1985). Premenarchal anorexia nervosa and its sequelae. Journal of Psychiatric Research, 19(2), 363–369. doi: 10.1016/0022-3956(85)90041-X.CrossRefGoogle Scholar
  71. Schönbrodt, F. D., Hagemeyer, B., Busch, H., Duffner, M., Engeser, S., Gerstenberg, F. X. R., et al. (2013). Die Psychometrie impliziter Motive (Teil 1 von 7): Kodiere jeden Satz und die Messung wird reliabler! Paper presented at the Colloquium on Motivational Psychology, Osnabrück, July 2013.Google Scholar
  72. Schultheiss, O. C. (2008). Implicit motives. In O. P. John, R. W. Robins, & L. A. Pervin (Eds.), Handbook of personality: theory and research (3rd ed., pp. 603–633). New York: Guilford Press.Google Scholar
  73. Schultheiss, O. C. (2013). The hormonal correlates of implicit motives. Social and Personality Psychology Compass, 7(1), 52–65. doi: 10.1111/spc3.12008.CrossRefGoogle Scholar
  74. Schultheiss, O. C. (2017). Evidence for prenatal organizational effects of steroids on the motivational brain. Psychoneuroendocrinology, (in press).Google Scholar
  75. Schultheiss, O. C., & Brunstein, J. C. (1999). Goal imagery: bridging the gap between implicit motives and explicit goals. Journal of Personality, 67(1), 1–38. doi: 10.1111/1467-6494.00046.CrossRefGoogle Scholar
  76. Schultheiss, O. C., & Brunstein, J. C. (2002). Inhibited power motivation and persuasive communication: a lens model analysis. Journal of Personality, 70(4), 553–582. doi: 10.1111/1467-6494.05014.CrossRefGoogle Scholar
  77. Schultheiss, O. C., & Hale, J. A. (2007). Implicit motives modulate attentional orienting to facial expressions of emotion. Motivation and Emotion, 31(1), 13–24. doi: 10.1007/s11031-006-9042-9.CrossRefGoogle Scholar
  78. Schultheiss, O. C., & Köllner, M. G. (2014). Implicit motives, affect, and the development of competencies: a virtuous-circle model of motive-driven learning. In R. Pekrun, & L. Linnenbrink-Garcia (Eds.), International Handbook of Emotions in Education (pp. 73–95, Educational psychology handbook series). New York: Taylor & Francis/Routledge.Google Scholar
  79. Schultheiss, O. C., & Pang, J. S. (2007). Measuring implicit motives. In R. W. Robins, R. C. Fraley, & R. F. Krueger (Eds.), Handbook of research methods in personality psychology (pp. 322–344). New York: Guilford Press.Google Scholar
  80. Schultheiss, O. C., & Rohde, W. (2002). Implicit power motivation predicts Men’s testosterone changes and implicit learning in a contest situation. Hormones and Behavior, 41(2), 195–202. doi: 10.1006/hbeh.2001.1745.CrossRefGoogle Scholar
  81. Schultheiss, O. C., & Zimni, M. (2015). Associations between implicit motives and salivary steroids, 2D:4D digit ratio, mental rotation performance, and verbal fluency. [journal article]. Adaptive Human Behavior and Physiology, 1(4), 387–407. doi: 10.1007/s40750-014-0012-2.CrossRefGoogle Scholar
  82. Schultheiss, O. C., Campbell, K. L., & McClelland, D. C. (1999). Implicit power motivation moderates men’s testosterone responses to imagined and real dominance success. Hormones and Behavior, 36(3), 234–241. doi: 10.1006/hbeh.1999.1542.CrossRefGoogle Scholar
  83. Schultheiss, O. C., Dargel, A., & Rohde, W. (2003). Implicit motives and sexual motivation and behavior. Journal of Research in Personality, 37(3), 224–230. doi: 10.1016/S0092-6566(02)00568-8.CrossRefGoogle Scholar
  84. Schultheiss, O. C., Wirth, M. M., & Stanton, S. J. (2004). Effects of affiliation and power motivation arousal on salivary progesterone and testosterone. Hormones and Behavior, 46(5), 592–599. doi: 10.1016/j.yhbeh.2004.07.005.CrossRefGoogle Scholar
  85. Schultheiss, O. C., Wirth, M. M., Torges, C. M., Pang, J. S., Villacorta, M. A., & Welsh, K. M. (2005). Effects of implicit power motivation on men’s and women’s implicit learning and testosterone changes after social victory or defeat. Journal of Personality and Social Psychology, 88(1), 174–188. doi: 10.1037/0022-3514.88.1.174.CrossRefGoogle Scholar
  86. Schultheiss, O. C., Jones, N. M., Davis, A. Q., & Kley, C. (2008). The role of implicit motivation in hot and cold goal pursuit: effects on goal progress, goal rumination, and emotional well-being. Journal of Research in Personality, 42(4), 971–987. doi: 10.1016/j.jrp.2007.12.009.CrossRefGoogle Scholar
  87. Schultheiss, O. C., Riebel, K., & Jones, N. M. (2009a). Activity inhibition: a predictor of lateralized brain function during stress? Neuropsychology, 23(3), 392–404. doi: 10.1037/a0014591.CrossRefGoogle Scholar
  88. Schultheiss, O. C., Yankova, D., Dirlikov, B., & Schad, D. J. (2009b). Are implicit and explicit motive measures statistically independent? A fair and balanced test using the picture story exercise and a cue- and response-matched questionnaire measure. Journal of Personality Assessment, 91(1), 72–81. doi: 10.1080/00223890802484456.CrossRefGoogle Scholar
  89. Schultheiss, O. C., Rösch, A. G., Rawolle, M., Kordik, A., & Graham, S. (2010). Implicit motives: current topics and future directions. In T. C. Urdan, & S. A. Karabenick (Eds.), Advances in motivation and achievement (Vol. 16a: The decade ahead: theoretical perspectives on motivation and achievement, pp. 199–233). Bingley: Emerald.Google Scholar
  90. Schulz, K. M., Molenda-Figueira, H. A., & Sisk, C. L. (2009). Back to the future: the organizational-activational hypothesis adapted to puberty and adolescence. Hormones and Behavior, 55(5), 597–604. doi: 10.1016/j.yhbeh.2009.03.010.CrossRefGoogle Scholar
  91. Sisk, C. L., & Zehr, J. L. (2005). Pubertal hormones organize the adolescent brain and behavior. Frontiers in Neuroendocrinology, 26(3), 163–174.CrossRefGoogle Scholar
  92. Smith, C. P. (1992). Motivation and personality: handbook of thematic content analysis. New York: Cambridge University Press.CrossRefGoogle Scholar
  93. Stanton, S. J., & Schultheiss, O. C. (2007). Basal and dynamic relationships between implicit power motivation and estradiol in women. Hormones and Behavior, 52(5), 571–580. doi: 10.1016/j.yhbeh.2007.07.002.CrossRefGoogle Scholar
  94. Stanton, S. J., & Schultheiss, O. C. (2009). The hormonal correlates of implicit power motivation. Journal of Research in Personality, 43(5), 942–949. doi: 10.1016/j.jrp.2009.04.001.CrossRefGoogle Scholar
  95. Stanton, S. J., & Schultheiss, O. C. (2011). Testosterone and power. In K. Dowding (Ed.), Encyclopedia of power (pp. 662–664). Thousand Oaks: Sage.Google Scholar
  96. Stanton, S. J., Hall, J. L., & Schultheiss, O. C. (2010). Properties of motive-specific incentives. In O. C. Schultheiss & J. C. Brunstein (Eds.), Implicit motives (pp. 245–278). New York: Oxford University Press.CrossRefGoogle Scholar
  97. Stirrat, M., Stulp, G., & Pollet, T. V. (2012). Male facial width is associated with death by contact violence: narrow-faced males are more likely to die from contact violence. Evolution and Human Behavior, 33(5), 551–556. doi: 10.1016/j.evolhumbehav.2012.02.002.CrossRefGoogle Scholar
  98. Stoeckart, P. F., Strick, M., Bijleveld, E., & Aarts, H. (2016). The implicit power motive predicts action selection. Psychological Research. doi: 10.1007/s00426-016-0768-z.
  99. Terburg, D., Morgan, B., & van Honk, J. (2009). The testosterone–cortisol ratio: a hormonal marker for proneness to social aggression. International Journal of Law and Psychiatry, 32(4), 216–223. doi: 10.1016/j.ijlp.2009.04.008.CrossRefGoogle Scholar
  100. Thornhill, R., & Grammer, K. (1999). The body and face of woman: one ornament that signals quality? Evolution and Human Behavior, 20(2), 105–120. doi: 10.1016/S1090-5138(98)00044-0.CrossRefGoogle Scholar
  101. Turanovic, J. J., Pratt, T. C., & Piquero, A. R. (2017). Exposure to fetal testosterone, aggression, and violent behavior: a meta-analysis of the 2D:4D digit ratio. Aggression and Violent Behavior, 33, 51–61. doi: 10.1016/j.avb.2017.01.008.CrossRefGoogle Scholar
  102. Verdonck, A., De Ridder, L., Verbeke, G., Bourguignon, J. P., Carels, C., Kühn, E. R., et al. (1998). Comparative effects of neonatal and prepubertal castration on craniofacial growth in rats. Archives of Oral Biology, 43(11), 861–871. doi: 10.1016/S0003-9969(98)00071-5.CrossRefGoogle Scholar
  103. Verdonck, A., Gaethofs, M., Carels, C., & de Zegher, F. (1999). Effect of low-dose testosterone treatment on craniofacial growth in boys with delayed puberty. The European Journal of Orthodontics, 21(2), 137–143.CrossRefGoogle Scholar
  104. Welker, K. M., Goetz, S. M. M., Galicia, S., Liphardt, J., & Carré, J. M. (2015). An examination of the associations between facial structure, aggressive behavior, and performance in the 2010 world cup association football players. Adaptive Human Behavior and Physiology, 1(1), 17–29. doi: 10.1007/s40750-014-0003-3.CrossRefGoogle Scholar
  105. Welker, K. M., Bird, B. M., & Arnocky, S. (2016). Commentary: facial width-to-height ratio (fWHR) is not associated with adolescent testosterone levels. Frontiers in Psychology, 7, 1745. doi: 10.3389/fpsyg.2016.01745.CrossRefGoogle Scholar
  106. Weston, E. M., Friday, A. E., & Liò, P. (2007). Biometric evidence that sexual selection has shaped the hominin face. PloS One, 2(8), e710. doi: 10.1371/journal.pone.0000710.CrossRefGoogle Scholar
  107. Winter, D. G. (1973). The power motive. New York: Free Press.Google Scholar
  108. Winter, D. G. (1988). The power motive in women—and men. Journal of Personality and Social Psychology, 54(3), 510–519. doi: 10.1037/0022-3514.54.3.510.CrossRefGoogle Scholar
  109. Winter, D. G. (1991). Measuring personality at a distance: development of an integrated system for scoring motives in running text. In D. J. Ozer, J. M. Healy, & A. J. Stewart (Eds.), Perspectives in personality (Vol. 3, pp. 59–89). London: Jessica Kingsley Publishers.Google Scholar
  110. Winter, D. G. (1994). Manual for scoring motive imagery in running text. (4th ed.). Department of Psychology, University of Michigan, Ann Arbor: Unpublished Manuscript.Google Scholar
  111. Zheng, Z., & Cohn, M. J. (2011). Developmental basis of sexually dimorphic digit ratios. Proceedings of the National Academy of Sciences, 108(39), 16289–16294. doi: 10.1073/pnas.1108312108.CrossRefGoogle Scholar
  112. Zilioli, S., Sell, A. N., Stirrat, M., Jagore, J., Vickerman, W., & Watson, N. V. (2015). Face of a fighter: Bizygomatic width as a cue of formidability. Aggressive Behavior, 41(4), 322–330. doi: 10.1002/ab.21544.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Kevin T. Janson
    • 1
  • Kira Bleck
    • 1
  • Julia Fenkl
    • 1
  • Lea T. Riegl
    • 2
  • Franziska Jägel
    • 3
  • Martin G. Köllner
    • 1
  1. 1.Department of PsychologyFriedrich-Alexander UniversityErlangenGermany
  2. 2.University of FreiburgFreiburgGermany
  3. 3.University of MannheimMannheimGermany

Personalised recommendations