Advertisement

Adaptive Human Behavior and Physiology

, Volume 3, Issue 4, pp 337–350 | Cite as

Effects of Sexually Dimorphic Shape Cues on Neurophysiological Correlates of Women’s Face Processing

  • Lisa L. M. Welling
  • Patricia E. G. Bestelmeyer
  • Benedict C. Jones
  • Lisa M. DeBruine
  • Kevin Allan
ORIGINAL ARTICLE

Abstract

Sexual dimorphism (i.e., masculinity in males and femininity in females) is known to affect social perceptions that are important for both mate choice and intrasexual competition, such as attractiveness and dominance. Little is known, however, about the neurophysiological underpinnings mediating sexual dimorphism’s effects on face processing. Here we investigate the neurological correlates of processing sexually dimorphic faces using event-related potentials (ERPs). We employed image transformation techniques to enhance and reduce the sexually dimorphic shape features of male and female faces viewed by women performing a sex categorization task. Sexual dimorphism modulated superior-central N250 magnitude and the peak latency of the N170 and P200. The sex of the face further modulated the amplitude of the P200. These findings extend prior work linking the superior-central N250 to social categorization processes triggered by face shape, and strengthen its functional interpretation in terms of coarse- versus fine-grained categorical judgements. We conclude that ERPs can illuminate the cognitive mechanisms (i.e., mental processes) underlying behavioral responses to sexual dimorphism.

Keywords

Faces Sexual Dimorphism Event-Related Potentials N250 N170 

Notes

Compliance with ethical standards

Conflict of Interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

References

  1. Allison, T., Puce, A., Spencer, D. D., & McCarthy, G. (1999). Electrophysiological studies of human face perception. I: Potentials generated in occipitotemporal cortex by face and non-face stimuli. Cerebral Cortex, 9(5), 415–430. doi: 10.1093/cercor/9.5.415.CrossRefGoogle Scholar
  2. Balas, B., & Nelson, C. A. (2010). The role of face shape and pigmentation in other-race face perception: An electrophysiological study. Neuropsychologia, 48(2), 498–506.CrossRefGoogle Scholar
  3. Bentin, S., & Deouell, L. Y. (2000). Structural encoding and identification in face processing: ERP evidence for separate mechanisms. Cognitive Neuropsychology, 17(1), 35–55. doi: 10.1080/026432900380472.CrossRefGoogle Scholar
  4. Bordieri, J. E., Solodky, M. L., & Mikos, K. A. (1985). Physical attractiveness and nurses' perceptions of pediatric patients. Nursing Research, 34(1), 24–26.CrossRefGoogle Scholar
  5. Buckingham, G., DeBruine, L. M., Little, A. C., Welling, L. L. M., Conway, C. A., Tiddeman, B. P., & Jones, B. C. (2006). Visual adaptation to masculine and feminine faces influences generalized preferences and perceptions of trustworthiness. Evolution and Human Behavior, 27(5), 381–389.CrossRefGoogle Scholar
  6. Cellerino, A., Borghetti, D., Valenzano, D. R., Tartarelli, G., Mennucci, A., Murri, L., & Sartucci, F. (2007). Neurophysiological correlates for the perception of facial sexual dimorphism. Brain Research Bulletin, 71(5), 515–522. doi: 10.1016/j.brainresbull.2006.11.007.CrossRefGoogle Scholar
  7. Chiu, R. K., & Babcock, R. D. (2002). The relative importance of facial attractiveness and gender in Hong Kong selection decisions. International Journal of Human Resource Management, 13(1), 141–155.CrossRefGoogle Scholar
  8. DeBruine, L. M., Jones, B. C., Little, A. C., Boothroyd, L. G., Perrett, D. I., Penton-Voak, I. S., et al. (2006). Correlated preferences for facial masculinity and ideal or actual partner’s masculinity. Proceedings of the Royal Society of London B, 273, 1355–1360.Google Scholar
  9. DeBruine, L. M., Jones, B. C., Crawford, J. R., Welling, L. L. M., & Little, A. C. (2010). The health of a nation predicts their mate preferences: Cross-cultural variation in women's preferences for masculinized male faces. Proceedings of the Royal Society B Biological Sciences, 277(1692), 2405–2410.CrossRefGoogle Scholar
  10. DeBruine, L. M., Jones, B. C., Little, A. C., Crawford, J. R., & Welling, L. L. M. (2011). Further evidence for regional variation in women's masculinity preferences. Proceedings of the Royal Society B: Biological Sciences, 278(1707), 813–814.CrossRefGoogle Scholar
  11. Dion, K. K. (1972). Physical attractiveness and evaluation of children's transgressions. Journal of Personality and Social Psychology, 24(2), 207–213.CrossRefGoogle Scholar
  12. Eimer, M. (2000). Event-related brain potentials distinguish processing stages involved in face perception and recognition. Clinical Neurophysiology: Official Journal of the International Federation of Clinical Neurophysiology, 111(4), 694–705.CrossRefGoogle Scholar
  13. Gangestad, S. W. (1993). Sexual selection and physical attractiveness: implications for mating dynamics. Human Nature, 4(3), 205–235.CrossRefGoogle Scholar
  14. Gangestad, S. W., & Buss, D. M. (1993). Pathogen prevalence and human mate preferences. Ethology and Sociobiology, 14, 89–96.CrossRefGoogle Scholar
  15. Gildersleeve, K. A., Haselton, M. G., & Fales, M. R. (2014). Do women’s mate preferences change across the ovulatory cycle? A meta-analytic review. Psychological Bulletin, 140(5), 1205–1259. doi: 10.1037/a0035438.CrossRefGoogle Scholar
  16. Halit, H., de Haan, M., & Johnson, M. H. (2000). Modulation of event-related potentials by prototypical and atypical faces. Neuroreport, 11(9), 1871–1875.CrossRefGoogle Scholar
  17. Herzmann, G., Schweinberger, S. R., Sommer, W., & Jentzsch, I. (2004). What's special about personally familiar faces? A multimodal approach. Psychophysiology, 41(5), 688–701.CrossRefGoogle Scholar
  18. Itier, R. J., & Taylor, M. J. (2004a). Effects of repetition learning on upright, inverted and contrast-reversed face processing using ERPs. NeuroImage, 21(4), 1518–1532.CrossRefGoogle Scholar
  19. Itier, R. J., & Taylor, M. J. (2004b). N170 or N1? Spatiotemporal differences between object and face processing using ERPs. Cerebral Cortex, 14(2), 132–142.CrossRefGoogle Scholar
  20. Ito, T. A., & Urland, G. R. (2003). Race and gender on the brain: Electrocortical measures of attention to the race and gender of multiply categorizable individuals. Journal of Personality and Social Psychology, 85(4), 616–626.CrossRefGoogle Scholar
  21. Ito, T. A., & Urland, G. R. (2005). The influence of processing objectives on the perception of faces: An ERP study of race and gender perception. Cognitive, Affective, & Behavioral Neuroscience, 5(1), 21–36.CrossRefGoogle Scholar
  22. Johnston, V. S., Hagel, R., Franklin, M., Fink, B., & Grammer, K. (2001). Male facial attractiveness: Evidence for hormone-mediated adaptive design. Evolution and Human Behavior, 21, 251–267. doi: 10.1016/S1090-5138(01)00066-6.CrossRefGoogle Scholar
  23. Jones, B. C., Little, A. C., Boothroyd, L., DeBruine, L. M., Feinberg, D. R., Law Smith, M. J., et al. (2005). Commitment to relationships and preferences for femininity and apparent health in faces are strongest on days of the menstrual cycle when progesterone level is high. Hormones and Behavior, 48(3), 283–290.CrossRefGoogle Scholar
  24. Kanwisher, N., McDermott, J., & Chun, M. M. (1997). The fusiform face area: A module in human extrastriate cortex specialized for face perception. The Journal of Neuroscience, 17(11), 4302–4311.Google Scholar
  25. Kaufmann, J. M., Schweinberger, S. R., & Burton, A. M. (2009). N250 ERP correlates of the acquisition of face representations across different images. Journal of Cognitive Neuroscience, 21(4), 625–641. doi: 10.1162/jocn.2009.21080.CrossRefGoogle Scholar
  26. Klein, M., & Ohr, D. (2000). Gerhard or Helmut? The effect of candidates’ ‘nonpolitical’ qualities on the voting decision - The German National Election 1998. Politische Vierteljahresschrift, 41, 199.CrossRefGoogle Scholar
  27. Kubota, J. T., & Ito, T. A. (2007). Multiple cues in social perception: The time course of processing race and facial expression. Journal of Experimental Social Psychology, 43(5), 738–752.CrossRefGoogle Scholar
  28. Kurdahi Badr, L., & Abdallah, B. (2001). Physical attractiveness of premature infants affects outcome at discharge from the NICU. Infant Behavior & Development, 24(1), 129–133.CrossRefGoogle Scholar
  29. Latinus, M., & Taylor, M. J. (2006). Face processing stages: Impact of difficulty and the separation of effects. Brain Research, 1123(1), 179–187.Google Scholar
  30. Le Grand, R., Mondloch, C. J., Maurer, D., & Brent, H. P. (2003). Expert face processing requires visual input to the right hemisphere during infancy. Nature Neuroscience, 6, 1108–1112.CrossRefGoogle Scholar
  31. Little, A. C., Burriss, R. P., Jones, B. C., & Roberts, S. C. (2007a). Facial appearance affects voting decisions. Evolution and Human Behavior, 28(1), 18–27. doi: 10.1016/j.evolhumbehav.2006.09.002.CrossRefGoogle Scholar
  32. Little, A. C., Cohen, D. L., Jones, B. C., & Belsky, J. (2007b). Human preferences for facial masculinity change with relationship type and environmental harshness. Behavioral Ecology and Sociobiology, 61, 967–973. doi: 10.1007/s00265-006-0325-7.CrossRefGoogle Scholar
  33. Little, A. C., Jones, B. C., & DeBruine, L. M. (2011). Facial attractiveness: Evolutionary based research. Philosophical Transactions of the Royal Society B, Biological Sciences, 366(1571), 1638–1659. doi: 10.1098/rstb.2010.0404.CrossRefGoogle Scholar
  34. Little, A. C., Jones, B. C., Penton-Voak, I. S., Burt, D. M., & Perrett, D. I. (2002). Partnership status and the temporal context of relationships influence human female preferences for sexual dimorphism in male face shape. Proceedings of the Royal Society B: Biological Sciences, 269(1496), 1095–1100. doi: 10.1098/rspb.2002.1984.CrossRefGoogle Scholar
  35. Maestripieri, D., Henry, A., & Nickels, N. (2017). Explaining financial and prosocial biases in favor of attractive people: Interdisciplinary perspectives from economics, social psychology, and evolutionary psychology. Behavioral and Brain Sciences, 40, 1–16.CrossRefGoogle Scholar
  36. McCarthy, G., Puce, A., Belger, A., & Allison, T. (1999). Electrophysiological studies of human face perception. II: Response properties of face-specific potentials generated in occipitotemporal cortex. Cerebral Cortex, 9(5), 431–444. doi: 10.1093/cercor/9.5.431.CrossRefGoogle Scholar
  37. Mogilski, J. K., & Welling, L. L. M. (2017). The relative importance of sexual dimorphism, fluctuating asymmetry, and color cues to health during evaluation of potential partners' facial photographs: A conjoint analysis study. Human Nature, 28(1), 53–75. doi: 10.1007/s12110-016-9277-4.CrossRefGoogle Scholar
  38. Mouchetant-Rostaing, Y., & Giard, M. H. (2003). Electrophysiological correlates of age and gender perception on human faces. Journal of Cognitive Neuroscience, 15(6), 900–910.CrossRefGoogle Scholar
  39. Penton-Voak, I. S., Jones, B. C., Little, A. C., Baker, S., Tiddeman, B. P., Burt, D. M., & Perrett, D. I. (2001). Symmetry, sexual dimorphism in facial proportions, and male facial attractiveness. Proceedings of the Royal Society B: Biological Sciences, 268(1476), 1617–1623. doi: 10.1098/rspb.2001.1703.CrossRefGoogle Scholar
  40. Penton-Voak, I. S., Perrett, D. I., Castles, D. L., Kobayashi, T., Burt, D. M., Murray, L. K., & Minamisawa, R. (1999). Menstrual cycle alters face preference. Nature, 399, 741–742. doi: 10.1038/21557.CrossRefGoogle Scholar
  41. Perrett, D. I., Hietanen, J. K., Oram, M. W., & Benson, P. J. (1992). Organization and functions of cells responsive to faces in the temporal cortex. Philosophical Transactions: Biological Sciences, 335(1273), 23–30.CrossRefGoogle Scholar
  42. Perrett, D. I., Lee, K. J., Penton-Voak, I. S., Rowland, D. R., Yoshikawa, S., Burt, D. M., et al. (1998). Effects of sexual dimorphism on facial attractiveness. Nature, 394, 884–887. doi: 10.1038/29772.CrossRefGoogle Scholar
  43. Puce, A., Allison, T., & McCarthy, G. (1999). Electrophysiological studies of human face perception. III: Effects of top-down processing on face-specific potentials. Cerebral Cortex, 9(5), 445–458. doi: 10.1093/cercor/9.5.445.CrossRefGoogle Scholar
  44. Rhodes, G., Chan, J., Zebrowitz, L. A., & Simmons, L. W. (2003). Does sexual dimorphism in human faces signal health? Proceedings of the Royal Society B: Biological Sciences, 270, S93–S95. doi: 10.1098/rsbl.2003.0023.CrossRefGoogle Scholar
  45. Rowland, D. A., & Perrett, D. I. (1995). Manipulating facial appearance through shape and color. IEEE Computer Graphics and Applications, 15(5), 70–76. doi: 10.1109/38.403830.CrossRefGoogle Scholar
  46. Rupp, H. A., James, T. W., Ketterson, E. D., Sengelaub, D. R., Janssen, E., & Heiman, J. R. (2009). Neural activation in women in response to masculinized male faces: mediation by hormones and psychosexual factors. Evolution and Human Behavior, 30(1), 1–10. doi: 10.1016/j.evolhumbehav.2008.08.006.CrossRefGoogle Scholar
  47. Schyns, P. G., Bonnar, L., & Gosselin, F. (2002). Show me the features! Understanding recognition from the use of visual information. Psychological Science, 13(5), 402–409.CrossRefGoogle Scholar
  48. Scott, L. S., Tanaka, J. W., Sheinberg, D. L., & Curran, T. (2006). A reevaluation of the electrophysiological correlates of expert object processing. Journal of Cognitive Neuroscience, 18(9), 1453–1465. doi: 10.1162/jocn.2006.18.9.1453.CrossRefGoogle Scholar
  49. Scott, L. S., Tanaka, J. W., Sheinberg, D. L., & Curran, T. (2008). The role of category learning in the acquisition and retention of perceptual expertise: A behavioral and neurophysiological study. Brain Research, 1210, 204–215.CrossRefGoogle Scholar
  50. Slaughter, V., Heron, M., & Sim, S. (2002). Development of preferences for the human body shape in infancy. Cognition, 85(3), B71–B81.CrossRefGoogle Scholar
  51. Stahl, J., Wiese, H., & Schweinberger, S. R. (2010). Learning task affects ERP-correlates of the own-race bias, but not recognition memory performance. Neuropsychologia, 48(7), 2027–2040.CrossRefGoogle Scholar
  52. Stephan, C. W., & Langlois, J. H. (1984). Baby beautiful: adult attributions of infant competence as a function of infant attractiveness. Child Development, 55(2), 576–585.CrossRefGoogle Scholar
  53. Tanaka, J. W., Curran, T., Porterfield, A. L., & Collins, D. (2006). Activation of Preexisting and Acquired Face Representations: The N250 Event-related Potential as an Index of Face Familiarity. Journal of Cognitive Neuroscience, 18(9), 1488–1497. doi: 10.1162/jocn.2006.18.9.1488.CrossRefGoogle Scholar
  54. Thornhill, R., & Gangestad, S. W. (1999). Facial attractiveness. Trends in Cognitive Science, 3(12), 452–460. doi: 10.1016/S1364-6613(99)01403-5.CrossRefGoogle Scholar
  55. Thornhill, R., & Gangestad, S. W. (2006). Facial sexual dimorphism, developmental stability, and susceptibility to disease in men and women. Evolution and Human Behavior, 27, 131–144. doi: 10.1016/j.evolhumbehav.2005.06.001.CrossRefGoogle Scholar
  56. Tiddeman, B. P., Burt, D. M., & Perrett, D. I. (2001). Prototyping and transforming facial texture for perception research. IEEE Computer Graphics and Applications, 21, 42–50. doi: 10.1109/38.946630.CrossRefGoogle Scholar
  57. Vukovic, J., Jones, B. C., DeBruine, L. M., Little, A. C., Feinberg, D. R., & Welling, L. L. M. (2009). Circum-menopausal effects on women's judgements of facial attractiveness. Biology Letters, 5(1), 62–64. doi: 10.1098/rsbl.2008.0478.CrossRefGoogle Scholar
  58. Walton, G. E., & Bower, T. G. R. (1993). Newborns form "prototypes" in less than 1 minute. Psychological Science, 4, 203–205.CrossRefGoogle Scholar
  59. Welling, L. L. M., DeBruine, L. M., Little, A. C., & Jones, B. C. (2009). Extraversion predicts individual differences in women's face preferences. Personality and Individual Differences, 47(8), 996–998.CrossRefGoogle Scholar
  60. Welling, L. L. M., Jones, B. C., & DeBruine, L. M. (2008c). Sex drive is positively associated with women's preferences for sexual dimorphism in men's and women's faces. Personality and Individual Differences, 44(1), 161–170.CrossRefGoogle Scholar
  61. Welling, L. L. M., Jones, B. C., DeBruine, L. M., Conway, C. A., Law Smith, M. J., Little, A. C., et al. (2007). Raised salivary testosterone in women is associated with increased attraction to masculine faces. Hormones and Behavior, 52(2), 156–161.CrossRefGoogle Scholar
  62. Welling, L. L. M., Jones, B. C., DeBruine, L. M., Little, A. C., & Smith, F. G. (2008b). Exposure to sexually attractive men decreases women’s preferences for feminine faces. Journal of Evolutionary Psychology, 6(3), 219–230.CrossRefGoogle Scholar
  63. Welling, L. L. M., Jones, B. C., DeBruine, L. M., Smith, F. G., Feinberg, D. R., Little, A. C., & Al-Dujaili, E. A. S. (2008a). Men report stronger attraction to femininity in women's faces when their testosterone levels are high. Hormones and Behavior, 54(5), 703–708.CrossRefGoogle Scholar
  64. Wiese, H., Schweinberger, S. R., & Hansen, K. (2008). The age of the beholder: ERP evidence of an own-age bias in face memory. Neuropsychologia, 46(12), 2973–2985.CrossRefGoogle Scholar
  65. Xu, Y., Liu, J., & Kanwisher, N. (2005). The M170 is selective for faces, not for expertise. Neuropsychologia, 43(4), 588–597.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Lisa L. M. Welling
    • 1
  • Patricia E. G. Bestelmeyer
    • 2
  • Benedict C. Jones
    • 3
  • Lisa M. DeBruine
    • 3
  • Kevin Allan
    • 4
  1. 1.Psychology DepartmentOakland UniversityRochesterUSA
  2. 2.School of PsychologyBangor UniversityGwyneddUK
  3. 3.Institute of Neuroscience and PsychologyUniversity of GlasgowGlasgowUK
  4. 4.School of Psychology, William Guild BuildingUniversity of AberdeenAberdeenUK

Personalised recommendations