Advertisement

Zero Fluoroscopy Ablation: Recent Trends in Radiation Exposure in the EP Lab

  • Chris Anderson
  • Alaina R. Martinez
  • Mansour Razminia
  • John ClarkEmail author
Cardiology/CT Surgery (K Gist, Section Editor)
  • 5 Downloads
Part of the following topical collections:
  1. Topical Collection on Cardiology/CT Surgery

Abstract

Purpose of review

Catheter ablation procedures involve fluoroscopy and can result in significant radiation exposure to the patient and staff. From the early 1980s to 2006, there was a 600% increase in the average medical radiation dose per person per year in the USA. Toward the end of this time frame, three-dimensional (3D) mapping systems, which use magnetic or electrical fields to track catheter location and movement, became clinically available. This has allowed reduction in fluoroscopy use. The goal of this manuscript is to review the current state of zero fluoroscopy ablations.

Recent findings

In the early 2000s, the first report of a 3D mapping system, used to replace fluoroscopy, emerged. By 2015, centers were routinely performing fluoroless ablations. Today, most centers use these systems to decrease radiation exposure. Multi-center registries now exist to quantify the changes in patient care.

Summary

Increased radiation exposure is associated with increased long-term risk of cancer. Today’s 3D mapping systems allow most ablation procedures to be performed without the use of fluoroscopy. With further refinements in the available tools, coupled with increasing operator experience, radiation exposure will be eliminated for all routine ablation procedures.

Keywords

Ablation Fluoroscopy Radiation Three-dimensional mapping SVT Tachycardia 

Notes

Compliance with Ethical Standards

Conflict of Interest

Chris Anderson declares that he has no conflict of interest. Alaina R. Martinez declares that she has no conflict of interest. Mansour Razminia is a consultant for Abbott. John Clark declares that he has no conflict of interest.

Human and animal rights and informed consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Mettler FA, Bhargavan M, Faulkner K, Gilley DB, Gray JE, Ibbott GS, et al. Radiologic and nuclear medicine studies in the United States and worldwide: frequency, radiation dose, and comparison with other radiation sources--1950-2007. Radiology. 2009;253(2):520–31.PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Rottner L, Metzner A, Ouyang F, Heeger C, Hayashi K, Fink T, et al. Direct comparison of point-by-point and rapid ultra-high-resolution electroanatomical mapping in patients scheduled for ablation of atrial fibrillation. J Cardiovasc Electrophysiol. 2017;28(3):289–97.PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Hilbert S, Sommer P, Gutberlet M, Gaspar T, Foldyna B, Piorkowski C, et al. Real-time magnetic resonance-guided ablation of typical right atrial flutter using a combination of active catheter tracking and passive catheter visualization in man: initial results from a consecutive patient series. Europace. 2016;18(4):572–7.PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Regoli F, Faletra FF, Scaglione M, Nucifora G, Moccetti T, Auricchio A. Pulmonary vein isolation guided by real-time three-dimensional transesophageal echocardiography. Pacing Clin Electrophysiol. 2012;35(3):e76–9.PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Gepstein L, Hayam G, Ben-Haim SA. A novel method for nonfluoroscopic catheter-based electroanatomical mapping of the heart. In vitro and in vivo accuracy results. Circulation. 1997;95(6):1611–22.PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Varanasi S, Dhala A, Blanck Z, Deshpande S, Akhtar M, Sra J. Electroanatomic mapping for radiofrequency ablation of cardiac arrhythmias. J Cardiovasc Electrophysiol. 1999;10(4):538–44.PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    • Drago F, Silvetti MS, Pino AD, Grutter G, Bevilacqua M, Leibovich S. Exclusion of fluoroscopy during ablation treatment of right accessory pathway in children. J Cardiovasc Electrophysiol. 2002;13(8):778–82. The sentinel publication of ablation being done without fluoroscopy. It was too narrow in scope to be broadly applicable in practice.Google Scholar
  8. 8.
    • Smith G, Clark JM. Elimination of fluoroscopy use in a pediatric electrophysiology laboratory utilizing three-dimensional mapping. Pacing Clin Electrophysiol. 2007;30(4):510–8. The first publications showing broad usefulness of the Ensite system to eliminate fluoroscopy for right sided substrates.PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    • Tuzcu V. A nonfluoroscopic approach for electrophysiology and catheter ablation procedures using a three-dimensional navigation system. Pacing Clin Electrophysiol. 2007;30(4):519–25. The first publications showing broad usefulness of the Ensite system to eliminate fluoroscopy for right sided substrates.PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    • Clark J, Bockoven JR, Lane J, Patel CR, Smith G. Use of three-dimensional catheter guidance and trans-esophageal echocardiography to eliminate fluoroscopy in catheter ablation of left-sided accessory pathways. Pacing Clin Electrophysiol. 2008;31(3):283–9. The first publication to add ultrasound to 3D mapping to eliminate fluoroscopy for left-sided substrates.PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    • Ferguson JD, Helms A, Mangrum JM, Mahapatra S, Mason P, Bilchick K, et al. Catheter ablation of atrial fibrillation without fluoroscopy using intracardiac echocardiography and electroanatomic mapping. Circ Arrhythm Electrophysiol. 2009;2(6):611–9. Each of the referenced articles, 7–11, represents an important advancement in the movement toward elimination of fluoroscopy.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Alvarez M, Tercedor L, Almansa I, Ros N, Galdeano RS, Burillo F, et al. Safety and feasibility of catheter ablation for atrioventricular nodal re-entrant tachycardia without fluoroscopic guidance. Heart Rhythm. 2009;6(12):1714–20.PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Álvarez M, Tercedor L, Herrera N, Muñoz L, Galdeano RS, Valverde F, et al. Cavotricuspid isthmus catheter ablation without the use of fluoroscopy as a first-line treatment. J Cardiovasc Electrophysiol. 2011;22(6):656–62.PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Reddy VY, Morales G, Ahmed H, Neuzil P, Dukkipati S, Kim S, et al. Catheter ablation of atrial fibrillation without the use of fluoroscopy. Heart Rhythm. 2010;7(11):1644–53.PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Von Bergen NH, Bansal S, Gingerich J, Law IH. Nonfluoroscopic and radiation-limited ablation of ventricular arrhythmias in children and young adults: a case series. Pediatr Cardiol. 2011;32(6):743–7.CrossRefGoogle Scholar
  16. 16.
    Kerst G, Weig H-J, Weretka S, Seizer P, Hofbeck M, Gawaz M, et al. Contact force-controlled zero-fluoroscopy catheter ablation of right-sided and left atrial arrhythmia substrates. Heart Rhythm. 2012;9(5):709–14.PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Tuzcu V. Significant reduction of fluoroscopy in pediatric catheter ablation procedures: long-term experience from a single center. Pacing Clin Electrophysiol. 2012;35(9):1067–73.PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Scaglione M, Ebrille E, Caponi D, Blandino A, Di Donna P, Siboldi A, et al. Single center experience of fluoroless AVNRT ablation guided by electroanatomic reconstruction in children and adolescents. Pacing Clin Electrophysiol. 2013;36(12):1460–7.PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Macías R, Uribe I, Tercedor L, Jiménez-Jáimez J, Jiménez J, Barrio T, et al. A zero-fluoroscopy approach to cavotricuspid isthmus catheter ablation: comparative analysis of two electroanatomical mapping systems. Pacing Clin Electrophysiol. 2014;37(8):1029–37.PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    • Scaglione M, Ebrille E, Caponi D, Siboldi A, Bertero G, Di Donna P, et al. Zero-fluoroscopy ablation of accessory pathways in children and adolescents: CARTO3 electroanatomic mapping combined with RF and Cryoenergy. Pacing Clin Electrophysiol. 2015;38(6):675–81. The first manuscript demonstrating the usefulness of CARTO 3 to eliminate fluoroscopy in multiple tachycardia mechanisms.PubMedCrossRefGoogle Scholar
  21. 21.
    Kühne M, Knecht S, Mühl A, Reichlin T, Pavlović N, Kessel-Schaefer A, et al. Fluoroscopy-free pulmonary vein isolation in patients with atrial fibrillation and a patent foramen ovale using solely an electroanatomic mapping system. Talkachova A, editor. PLoS One. 2016;11(1):e0148059. PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Marini M, Del Greco M, Ravanelli D, Cima A, Coser A, Porcedda G, et al. The benefit of a general, systematic use of mapping systems during electrophysiological procedures in children and teenagers: the experience of an adult EP laboratory. Pediatr Cardiol. 2016;37(4):802–9.PubMedCrossRefGoogle Scholar
  23. 23.
    •• Razminia M, Willoughby MC, Demo H, Keshmiri H, Wang T, D’Silva OJ, et al. Fluoroless catheter ablation of cardiac arrhythmias: a 5-year experience. Pacing Clin Electrophysiol. 2017;40(4):425–433. This study demonstrates the extent to which fluoroscopy can be minimized when the tools are used to their potential.PubMedCrossRefGoogle Scholar
  24. 24.
    Koca S. Electroanatomic mapping guided pediatric catheter ablation with limited/zero fluoroscopy. Anatol J Cardiol [Internet]. 2018 [cited 2018 Oct 1]; Available from: http://www.anakarder.com/jvi.aspx?pdir=anatoljcardiol&plng=eng&un=AJC-72687.
  25. 25.
    Miller DL, Balter S, Noonan PT, Georgia JD. Minimizing radiation-induced skin injury in interventional radiology procedures. Radiology. 2002;225(2):329–36.PubMedCrossRefGoogle Scholar
  26. 26.
    Spiker A, Zinn Z, Carter WH, Powers R, Kovach R. Fluoroscopy-induced chronic radiation dermatitis. Am J Cardiol. 2012;110(12):1861–3.PubMedCrossRefGoogle Scholar
  27. 27.
    Srimahachota S, Udayachalerm W, Kupharang T, Sukwijit K, Krisanachinda A, Rehani M. Radiation skin injury caused by percutaneous coronary intervention, report of 3 cases. Int J Cardiol. 2012;154(2):e31–3.PubMedCrossRefGoogle Scholar
  28. 28.
    Boncher J, Bergfeld WF. Fluoroscopy-induced chronic radiation dermatitis: a report of two additional cases and a brief review of the literature. J Cutan Pathol. 2012;39(1):63–7.PubMedCrossRefGoogle Scholar
  29. 29.
    Batrani M, Kubba A, Sundharam J. Fluoroscopy-induced chronic radiation dermatitis masquerading as morphea: a diagnostic pitfall. Indian J Pathol Microbiol. 2018;61(3):393–6.PubMedCrossRefGoogle Scholar
  30. 30.
    Reichman EF. Fluoroscopy-induced radiation dermatitis. J Emerg Med. 2014;47(5):e117–9.PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Kovoor P, Ricciardello M, Collins L, Uther JB, Ross DL. Risk to patients from radiation associated with radiofrequency ablation for supraventricular tachycardia. Circulation. 1998;98(15):1534–40.PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Perisinakis K, Damilakis J, Theocharopoulos N, Manios E, Vardas P, Gourtsoyiannis N. Accurate assessment of patient effective radiation dose and associated detriment risk from radiofrequency catheter ablation procedures. Circulation. 2001;104(1):58–62.PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Lickfett L, Mahesh M, Vasamreddy C, Bradley D, Jayam V, Eldadah Z, et al. Radiation exposure during catheter ablation of atrial fibrillation. Circulation. 2004;110(19):3003–10.PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Beels L, Bacher K, De Wolf D, Werbrouck J, Thierens H. γ-H2AX foci as a biomarker for patient X-ray exposure in pediatric cardiac catheterization: are we underestimating radiation risks? Circulation. 2009;120(19):1903–9.PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Casella M, Dello Russo A, Pelargonio G, Del Greco M, Zingarini G, Piacenti M, et al. Near zero fluoroscopic exposure during catheter ablation of supraventricular arrythmias: the NO-PARTY multicentre randomized trial. Europace. 2016;18(10):1565–72.PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Venneri L, Rossi F, Botto N, Andreassi MG, Salcone N, Emad A, et al. Cancer risk from professional exposure in staff working in cardiac catheterization laboratory: insights from the National Research Council’s biological effects of ionizing radiation VII report. Am Heart J. 2009;157(1):118–24.PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Roguin A, Goldstein J, Bar O, Goldstein JA. Brain and neck tumors among physicians performing interventional procedures. Am J Cardiol. 2013;111(9):1368–72.PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Elmaraezy A, Ebraheem Morra M, Tarek Mohammed A, Al-Habaa A, Elgebaly A, Abdelmotaleb Ghazy A, et al. Risk of cataract among interventional cardiologists and catheterization lab staff: a systematic review and meta-analysis: risk of cataract among in IC’s. Catheter Cardiovasc Interv. 2017;90(1):1–9.PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Ciraj-Bjelac O, Rehani MM, Sim KH, Liew HB, Vano E, Kleiman NJ. Risk for radiation-induced cataract for staff in interventional cardiology: is there reason for concern? Catheter Cardiovasc Interv. 2010;76(6):826–34.PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Ciraj-Bjelac O, Rehani M, Minamoto A, Sim KH, Liew HB, Vano E. Radiation-induced eye lens changes and risk for cataract in interventional cardiology. Cardiology. 2012;123(3):168–71.PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Jacob S, Boveda S, Bar O, Brézin A, Maccia C, Laurier D, et al. Interventional cardiologists and risk of radiation-induced cataract: results of a French multicenter observational study. Int J Cardiol. 2013;167(5):1843–7.PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Goldstein JA, Balter S, Cowley M, Hodgson J, Klein LW. On behalf of the Interventional Committee of the Society of Cardiovascular Interventions. Occupational hazards of interventional cardiologists: prevalence of orthopedic health problems in contemporary practice. Catheter Cardiovasc Interv. 2004;63(4):407–11.PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Orme NM, Rihal CS, Gulati R, Holmes DR, Lennon RJ, Lewis BR, et al. Occupational health hazards of working in the interventional laboratory: a multisite case control study of physicians and allied staff. J Am Coll Cardiol. 2015;65(8):820–6.PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Smilowitz NR, Balter S, Weisz G. Occupational hazards of interventional cardiology. Cardiovasc Revasc Med. 2013;14(4):223–8.PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Ross AM, Segal J, Borenstein D, Jenkins E, Cho S. Prevalence of spinal disc disease among interventional cardiologists. Am J Cardiol. 1997;79(1):68–70.PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Doll R, Wakeford R. Risk of childhood cancer from fetal irradiation. Br J Radiol. 1997;70:130–9.PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Damilakis J, Theocharopoulos N, Perisinakis K, Manios E, Dimitriou P, Vardas P, et al. Conceptus radiation dose and risk from cardiac catheter ablation procedures. Circulation. 2001;104(8):893–7.PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Bigelow AM, Crane SS, Khoury FR, Clark JM. Catheter ablation of supraventricular tachycardia without fluoroscopy during pregnancy. Obstet Gynecol. 2015;125(6):1338–41.PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Driver K, Chisholm CA, Darby AE, Malhotra R, Dimarco JP, Ferguson JD. Catheter ablation of arrhythmia during pregnancy. J Cardiovasc Electrophysiol. 2015;26(6):698–702.PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Ferguson JD, Helms A, Mangrum JM, DiMARCO JP. Ablation of incessant left atrial tachycardia without fluoroscopy in a pregnant woman. J Cardiovasc Electrophysiol. 2011;22(3):346–9.PubMedCrossRefGoogle Scholar
  51. 51.
    Hogarth AJ, Graham LN. Normal heart ventricular tachycardia associated with pregnancy: successful treatment with catheter ablation. Indian Pacing Electrophysiol J. 2014;14(2):79–82.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Leiria TLL, Pires LM, Kruse ML, de Lima GG. Supraventricular tachycardia and syncope during pregnancy: a case for catheter ablation without fluoroscopy. Rev Port Cardiol Engl Ed. 2014;33(12):805.e1–5.CrossRefGoogle Scholar
  53. 53.
    Manjaly Z-R, Sachdev B, Webb T, Rajappan K. Ablation of arrhythmia in pregnancy can be done safely when necessary. Eur J Obstet Gynecol Reprod Biol. 2011;157(1):116–7.PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Stec S, Krynski T, Baran J, Kulakowski P. “Rescue” ablation of electrical storm in arrhythmogenic right ventricular cardiomyopathy in pregnancy. BMC Cardiovasc Disord [Internet]. 2013 Dec [cited 2018 Oct 1];13(1). Available from: http://bmccardiovascdisord.biomedcentral.com/articles/10.1186/1471-2261-13-58.
  55. 55.
    Szumowski L, Szufladowicz E, Orczykowski M, Bodalski R, Derejko P, Przybylski A, et al. Ablation of severe drug-resistant tachyarrhythmia during pregnancy. J Cardiovasc Electrophysiol. 2010;21(8):877–82.Google Scholar
  56. 56.
    Wu H, Ling L-H, Lee G, Kistler PM. Successful catheter ablation of incessant atrial tachycardia in pregnancy using three-dimensional electroanatomical mapping with minimal radiation: brief communication. Intern Med J. 2012;42(6):709–12.PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Zuberi Z, Silberbauer J, Murgatroyd F. Successful non-fluoroscopic radiofrequency ablation of incessant atrial tachycardia in a high risk twin pregnancy. Indian Pacing Electrophysiol J. 2014;14(1):26–31.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Ait-Ali L, Andreassi MG, Foffa I, Spadoni I, Vano E, Picano E. Cumulative patient effective dose and acute radiation-induced chromosomal DNA damage in children with congenital heart disease. Heart. 2010;96(4):269–74.PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Johnson JN, Hornik CP, Li JS, Benjamin DK, Yoshizumi TT, Reiman RE, et al. Cumulative radiation exposure and cancer risk estimation in children with heart disease. Circulation. 2014;130(2):161–7.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Bigelow AM, Arnold BS, Padrutt GC, Clark JM. Non-fluoroscopic cardiac ablation of neonates with CHD. Cardiol Young. 2017;27(03):592–6.PubMedCrossRefGoogle Scholar
  61. 61.
    Ector J, Dragusin O, Adriaenssens B, Huybrechts W, Willems R, Ector H, et al. Obesity is a major determinant of radiation dose in patients undergoing pulmonary vein isolation for atrial fibrillation. J Am Coll Cardiol. 2007;50(3):234–42.PubMedCrossRefGoogle Scholar
  62. 62.
    Van Hare GF, Javitz H, Carmelli D, Saul JP, Tanel RE, Fischbach PS, et al. Prospective assessment after pediatric cardiac ablation: demographics, medical profiles, and initial outcomes. J Cardiovasc Electrophysiol. 2004;15(7):759–70.PubMedCrossRefGoogle Scholar
  63. 63.
    •• Dubin AM, Jorgensen NW, Radbill AE, Bradley DJ, Silva JN, Tsao S, et al. What have we learned in the last 20 years? A comparison of a modern era pediatric and congenital catheter ablation registry to previous pediatric ablation registries. Heart Rhythm. 2019;16(1):57–63. This is a multi-centered study, showing that the procedure has broad application.PubMedCrossRefGoogle Scholar
  64. 64.
    Gist K, Tigges C, Smith G, Clark J. Learning curve for zero-fluoroscopy catheter ablation of AVNRT: early versus late experience. Pacing Clin Electrophysiol. 2011;34(3):264–8.PubMedCrossRefGoogle Scholar
  65. 65.
    Solimene F, Donnici G, Shopova G, Nappi F, Cannizzaro E, Chiariello P, et al. Trends in fluoroscopy time during radiofrequency catheter ablation of supraventricular tachycardias. Int J Cardiol. 2016;202:124–5.PubMedCrossRefGoogle Scholar
  66. 66.
    •• Philip Saul J, Kanter RJ, Writing Committee, Abrams D, Asirvatham S, Bar-Cohen Y, et al. PACES/HRS expert consensus statement on the use of catheter ablation in children and patients with congenital heart disease: developed in partnership with the Pediatric and Congenital Electrophysiology Society (PACES) and the Heart Rhythm Society (HRS). Endorsed by the governing bodies of PACES, HRS, the American Academy of Pediatrics (AAP), the American Heart Association (AHA), and the Association for European Pediatric and Congenital Cardiology (AEPC). Heart Rhythm. 2016;13(6):e251–89. This article demonstrates the acceptance that the approach has obtained in the pediatric field, being now considered standard of care.PubMedCrossRefGoogle Scholar
  67. 67.
    •• Razminia M, Zei P. Fluoroscopy reduction techniques for catheter ablation of cardiac arrhythmias. Cardiotext. 2019. The book is significant because it is a more in-depth review of fluoroless procedures and it is the first book published on the topic.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Chris Anderson
    • 1
  • Alaina R. Martinez
    • 2
  • Mansour Razminia
    • 3
  • John Clark
    • 4
    Email author
  1. 1.Center for Congenital Heart DiseaseProvidence Sacred Heart Children’s HospitalSpokaneUSA
  2. 2.Rebbecca D. Considine Research InstituteAkron Children’s HospitalAkronUSA
  3. 3.Clinical Cardiac ElectrophysiologyAmita HealthElginUSA
  4. 4.The Heart CenterAkron Children’s HospitalAkronUSA

Personalised recommendations