Statistical Inference for the Chen Distribution Based on Upper Record Values

  • Farhad YousafEmail author
  • Sajid Ali
  • Ismail Shah


This article presents the Bayesian and classical inferences for the Chen distribution assuming upper record values. As the posterior distribution is not in a closed form, a Markov Chain Monte Carlo method is presented to obtain the posterior summaries. To assess the effect of prior on the estimated parameters, sensitivity analysis is also a part of this study. Moreover, a comparison between the Bayesian and frequentist approaches is also given. Besides the simulation studies, a real data example to show the application of the study is also discussed.


Asymptotic intervals Bayesian prediction Exponentiated Chen distribution Record values 



  1. 1.
    Abdi M, Asgharzadeh A (2018) Rayleigh confidence regions based on record data. J Stat Res Iran 14(2):171–188CrossRefGoogle Scholar
  2. 2.
    Ahmadi J, Doostparast M (2006) Bayesian estimation and prediction for some life distributions based on record values. Stat Pap 47(3):373–392CrossRefGoogle Scholar
  3. 3.
    Ahmadi J, MirMostafaee S (2009) Prediction intervals for future records and order statistics coming from two parameter exponential distribution. Stat Probab Lett 79(7):977–983CrossRefGoogle Scholar
  4. 4.
    Ahsanullah M (1995) Record statistics. Nova Science Publishers, HauppaugeGoogle Scholar
  5. 5.
    Ahsanullah M, Nevzorov VB (2015) Records via probability theory. Springer, BerlinCrossRefGoogle Scholar
  6. 6.
    Al-Hussaini EK, Ahmad AE-BA (2003) On bayesian interval prediction of future records. Test 12(1):79CrossRefGoogle Scholar
  7. 7.
    Basak P, Balakrishnan N (2003) Maximum likelihood prediction of future record statistic. In: Mathematical and statistical methods in reliability, pp 159–175.
  8. 8.
    Chandler KN (1952) The distribution and frequency of record values. J R Stat Soc Series B Methodol 14(2):220–228Google Scholar
  9. 9.
    Chaubey YP, Zhang R (2015) An extension of chens family of survival distributions with bathtub shape or increasing hazard rate function. Commun Stat Theory Methods 44(19):4049–4064CrossRefGoogle Scholar
  10. 10.
    Chen Z (2000) A new two-parameter lifetime distribution with bathtub shape or increasing failure rate function. Stat Probab Lett 49(2):155–161CrossRefGoogle Scholar
  11. 11.
    Dey S, Kumar D, Ramos PL, Louzada F (2017) Exponentiated Chen distribution: properties and estimation. Commun Stat Simul Comput 46(10):8118–8139CrossRefGoogle Scholar
  12. 12.
    Dziubdziela W, Kopociński B (1976) Limiting properties of the k-th record values. Appl Math 2(15):187–190Google Scholar
  13. 13.
    Ferguson TS (1967) On characterizing distributions by properties of order statistics. Sankhyā Indian J Stat Ser A 21(2):265–278Google Scholar
  14. 14.
    Hastings WK (1970) Monte carlo sampling methods using markov chains and their applications. Biometrika 57(1):97–197CrossRefGoogle Scholar
  15. 15.
    Kayal T, Tripathi YM, Singh DP, Rastogi MK (2017) Estimation and prediction for chen distribution with bathtub shape under progressive censoring. J Stat Comput Simul 87(2):348–366CrossRefGoogle Scholar
  16. 16.
    Khan MS, King R, Hudson IL (2018) Kumaraswamy exponentiated chen distribution for modelling lifetime data. Appl Math Inf Sci 12(3):617–623CrossRefGoogle Scholar
  17. 17.
    Lai C, Xie M, Murthy D (2003) A modified Weibull distribution. IEEE Trans Reliab 52(1):33–37CrossRefGoogle Scholar
  18. 18.
    Lawless JF (2011) Statistical models and methods for lifetime data, vol 362. Wiley, HobokenGoogle Scholar
  19. 19.
    Legendre AM (1805) New methods for the determination of cometary orbits. F. Didot, ParisGoogle Scholar
  20. 20.
    Madi MT, Raqab MZ (2007) Bayesian prediction of rainfall records using the generalized exponential distribution. Environ Off J Int Environ Soc 18(5):541–549Google Scholar
  21. 21.
    Marshall AW, Olkin I (1997) A new method for adding a parameter to a family of distributions with application to the exponential and Weibull families. Biometrika 84(3):641–652CrossRefGoogle Scholar
  22. 22.
    Martz H, Waller R (1982) Bayesian reliability analysis. Wiley, HobokenGoogle Scholar
  23. 23.
    Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH, Teller E (1953) Equation of state calculations by fast computing machines. J Chem Phys 21(6):1087–1092CrossRefGoogle Scholar
  24. 24.
    Nadar M, Kızılaslan F (2015) Estimation and prediction of the burr type xii distribution based on record values and inter-record times. J Stat Comput Simul 85(16):3297–3321CrossRefGoogle Scholar
  25. 25.
    Nagaraja H (1977) On a characterization based on record values. Aust J Stat 19(1):70–73CrossRefGoogle Scholar
  26. 26.
    Nevzorov VB (1988) Records. Theory Probab Appl 32(2):201–228CrossRefGoogle Scholar
  27. 27.
    Pakhteev A, Stepanov A (2016) Simulation of gamma records. Stat Probab Lett 119:204–212CrossRefGoogle Scholar
  28. 28.
    Srivastava R (1979) Two characterizations of the geometric distribution by record values. Sankhyā Indian J Stat Ser B 40(3):276–278Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of StatisticsQuaid-i-Azam UniversityIslamabadPakistan

Personalised recommendations