Characterization of 2017A Anodized Aluminum Alloy by Infrared Thermographic Techniques and SEM Observations During Tensile Testing

  • C. Fares
  • M. A. Belouchrani
  • M. Hadj MelianiEmail author
  • A. Alhussein
  • N. Merah
  • Guy Pluvinage


The aim of this research is to determine the effect of an electrochemical treatment (anodizing) on the mechanical behavior of 2017A aluminum alloys to improve corrosion. Two surface treatments state, namely, anodized and unanodized were considered. Meanwhile, the tensile and fracture tests for laboratory specimens to failure, yield strength, tensile strength and fracture surface of anodic films at different conditions were investigated. The damage initiation and progression during tensile testing was tracked through the use of complementary non-destructive evaluation by means of technique called infrared thermography. The results showed that the fracture life of anodized specimens was reduced a lot compared to aluminum alloy, which can be attributed to the surface crack sites initiated at the oxide layer. The fracture surface analyses also revealed that the number of crack initiation sites enlarged on the anodizing specimens.


Anodizing Non-destructive evaluation Infrared thermography 2017A Aluminum alloy Tensile testing 



  1. 1.
    Saenz de Miera M, Curioni M, Skeldon P, Thompson GE (2008) Modelling the anodizing behaviour of aluminium alloys in sulphuric acid through alloy analogues. Corros Sci 5:3410–3415CrossRefGoogle Scholar
  2. 2.
    Hashimoto T, Zhou X, Skeldon P, Thompson GE (2015) Structure of the copper-enrichedlayer introduced by anodic oxidation of copper-containing aluminium alloy. Electrochim Acta 179:394–401CrossRefGoogle Scholar
  3. 3.
    Garcia-Vergara SJ, El Khazmi K, Skeldon P, Thompson GE (2006) Influence of copper on the morphology of porous anodic alumina. Corros Sci 48:2937–2946CrossRefGoogle Scholar
  4. 4.
    Gröber D, Georgi W, Sieber M, Scharf I, Hellmig RJ, Leidich E, Lampke T, Mayr P (2015) The effect of anodising on the fatigue performance of self-tapping aluminium screws. Int J Fatigue 75:108–114CrossRefGoogle Scholar
  5. 5.
    Dragatogiannis Dimitrios A, Koumoulos Elias P, Kartsonakis Ioannis A, Charitidis Costas A (2016) Deformation mechanism during nanoindentation creep and corrosion resistance of Zn. Int J Struct Integr 7(1):47–69CrossRefGoogle Scholar
  6. 6.
    Trdan U, Žagar S, Grum J, Ocana JL (2011) Surface modification of laser and shot peened 6082 aluminium alloy: laser peening effect to pitting corrosion. Int J Struct Integr 2(1):9–21CrossRefGoogle Scholar
  7. 7.
    Cree AM, Weidmann GW (1997) Effect of anodised coatings on fatigue crack growth rates in aluminum alloy. Surf Eng 13:51–55CrossRefGoogle Scholar
  8. 8.
    Cree AM, Weidmann GW (1997) The fracture and fatigue properties of anodised aluminium alloy. Trans Inst Met Finish 75:199–202CrossRefGoogle Scholar
  9. 9.
    Cree AM, Hainsworth SV, Weidmann GW (2006) The fracture and fatigue properties of anodised aluminium alloy. Trans Inst Met Finish 84:246–251CrossRefGoogle Scholar
  10. 10.
    DeCamargo JAM, Cornelis HJ, Cioffi VMOH, Costa MYP (2007) Coating residual stress effects on fatigue performance of 7050-T7451 aluminum alloy. Surf Coat Technol 201:9448–9455CrossRefGoogle Scholar
  11. 11.
    Lonyuk B, Apachitei I, Duszczyk J (2007) The effect of oxide coatings on fatigue properties of 7475-T6 aluminium alloy. Surf Coat Technol 201:8688–8694CrossRefGoogle Scholar
  12. 12.
    Cirik E, Genel K (2008) Effect of anodic oxidation on fatigue performance of 7075-T6 alloy. Surf Coat Technol 202:5190–5201CrossRefGoogle Scholar
  13. 13.
    Sadeler R (2006) Effect of a commercial hard anodizing on the fatigue property of a 2014–T6 aluminium alloy. J Mater Sci 41:5803–5809CrossRefGoogle Scholar
  14. 14.
    Bensalah W, Elleuch K, Feki M, De Petris-Wery M, Ayedi HF (2009) Mechanical failure of anodized film of aluminium in bending. Mater Des 30:3141–3149CrossRefGoogle Scholar
  15. 15.
    Nie B, Zhang Z, Zhao Z, Zhong Q (2013) Effect of anodizing treatment on the very high cycle fatigue behavior of 2A12-T4 aluminum alloy. Mater Des 50:1005–1010CrossRefGoogle Scholar
  16. 16.
    Chaussumier M, Mabru C, Shahzad M, Chieragatti R, Rezai-Aria F (2013) A predictive fatigue life model for anodized 7050 aluminium alloy. Int J Fatigue 48:205–213CrossRefGoogle Scholar
  17. 17.
    Chaussumier M, Mabru C, Chieragatti R, Shahzad M (2013) Fatigue life model for 7050 chromic anodized aluminium alloy. Procedia Eng 66:300–312CrossRefGoogle Scholar
  18. 18.
    Shahzad M, Chaussumier M, Chieragatti R, Mabru C, Rezai-Aria F (2011) Surface characterization and influence of anodizing process on fatigue life of Al 7050 alloy. Mater Des 32:3328–3335CrossRefGoogle Scholar
  19. 19.
    Zhao X, Wei G, Yu Y, Guo Y, Zhang A (2015) An analysis of mechanical properties of anodized aluminum film at high stress. Surf Rev Lett 22(1550002):1–7Google Scholar
  20. 20.
    Shih T-S, Lee T-H, Jhou Y-J (2014) The effects of anodization treatment on the microstructure and fatigue behavior of 7075-T73 aluminum. Alloy Mater Trans 55:1280–1285CrossRefGoogle Scholar
  21. 21.
    Fares C, Boudiaf A, Belouchrani MA, Boukharouba T (2013) Microstructural characterization of oxide layer developed by sulphuric anodisation on 2017A alloys. Int J Mater Res 104:1–6CrossRefGoogle Scholar
  22. 22.
    Fares C, Hemmouche L, Belouchrani MA, Amrouche A, Chicot D, Puchi-Cabrera ES (2015) Coupled effects of substrate microstructure and sulphuric acid anodizing on fatigue life of a 2017A aluminum alloy. Mater Des 86:723–734CrossRefGoogle Scholar
  23. 23.
    Hemmouche L, Fares C, Belouchrani MA (2013) Influence of heat treatments and anodization on fatigue life of 2017A alloy. Eng Fail Anal 35:554–561CrossRefGoogle Scholar
  24. 24.
    Žďárský M, Valach J (2009) Comparison of strain fields of CT specimen determined by FEM and by thermoplastic measurement. In: Engineering Mechanics 2009. UTAM, Prague, pp 310–319. ISBN 978-80-86246-35-2Google Scholar
  25. 25.
    Hadj Meliani M, Azari Z, Pluvinage G, Capelle J (2010) Gouge assessment for pipes and associated transferability problem. Eng Failure Anal 17:1117–1126CrossRefGoogle Scholar
  26. 26.
    Hadj Meliani M, Matvienko YuG, Pluvinage G (2011) Corrosion defect assessment on pipes using limit analysis and notch fracture mechanics. Engng Failure Anal 18:271–283CrossRefGoogle Scholar
  27. 27.
    Hadj Meliani M, Matvienko Yu G, Pluvinage G (2011) Two-parameter fracture criterion (K, c Tef) based on notch fracture mechanics. Int J Fract 167:173–182CrossRefGoogle Scholar
  28. 28.
    Savas Terence P, Earthman James C (2008) Surface characterization of 7075-T73 aluminum exposed to anodizing pretreatment solutions. JMEPEG 17:674–681CrossRefGoogle Scholar
  29. 29.
    Muthana BGN, Amara M, HadjMeliani M, Mettai B, Božić Ž, Suleiman R, Sorour AA (2019) Inspection of internal erosion-corrosion of elbow pipe in the desalination station. Eng Fail Anal 102:293–302CrossRefGoogle Scholar
  30. 30.
    Soudani M, Bouledroua O, Meliani MH, El-miloudi K, Muthanna BGN (2018) Corrosion inspection and recommendation on the internal wall degradation caused rupture of 6” gas line pipe. J Bio Tribo Corros 4(2):28CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • C. Fares
    • 1
  • M. A. Belouchrani
    • 2
  • M. Hadj Meliani
    • 1
    • 4
    Email author
  • A. Alhussein
    • 3
  • N. Merah
    • 5
  • Guy Pluvinage
    • 4
  1. 1.LPTPM, Hassiba Benbouali University of ChlefChlefAlgeria
  2. 2.Polytechnic Military School (EMP)AlgiersAlgeria
  3. 3.ICD-LASMIS, Université de Technologie de Troyes, UMR 6281, CNRS, Antenne de Nogent, Pôle Technologique de Haute-ChampagneNogentFrance
  4. 4.LEM3, Lorraine University, Ilea of SaulcyMetzFrance
  5. 5.Mechanical Engineering DepartmentKing Fahd University of Petroleum and MineralsDhahranSaudi Arabia

Personalised recommendations