Inhibition of Carbon Steel Corrosion in HCl and H2SO4 Solutions by Ethyl 2-Cyano-2-(1,3-dithian-2-ylidene) Acetate

  • Abdelali FialaEmail author
  • Wafia Boukhedena
  • Salah Eddine Lemallem
  • Hayet Brahim Ladouani
  • Hamza Allal


The adsorption behaviour of Ethyl 2-cyano-2-(1,3-dithian-2-ylidene) acetate (ECDYA) on carbon steel and its inhibitive action on corrosion in 1 M HCl and 0.5 M H2SO4 aqueous solutions were examined using different corrosion evaluation methods, such as weight loss, potentiodynamic polarisation and electrochemical impedance spectroscopy. The results obtained showed that the inhibitory character of this product increases with the concentration but this character is inversely related to the temperature. Tafel curves have revealed that this compound (ECDYA) possesses the indices of a mixed inhibitor. The inhibiting effect of this compound was interpreted through its adsorption on the metal surface. The Langmuir isotherm adequately describes the process of adsorption of the ECDYA molecules on the surface of the steel in this medium. The experimental results revealed that ECDYA restrains the corrosion reaction in both acidic environments, the inhibition efficiency being stronger in H2SO4 than in HCl. The discussion of kinetic and thermodynamic parameters such as activation energy, enthalpy, entropy and adsorption free energy has also been the subject of this work. Quantum chemical parameters were calculated and discussed.


Corrosion inhibitor Carbon steel Acidic media Ethyl 2-cyano-2-(1,3-dithian- 2-ylidene) acetate Density functional theory 


Compliance with Ethical Standards

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.


  1. 1.
    Kalla A, Benahmed M, Djeddi N, Akkal S (2016) Corrosion inhibition of carbon steel in 1 M H2SO4 solution by Thapsia villosa extracts. Int J Ind Chem 7:419–429CrossRefGoogle Scholar
  2. 2.
    Pradeep Kumar CB, Mohana KN (2014) Corrosion inhibition efficiency and adsorption characteristics of some Schiff bases at mild steel/hydrochloric acid interface. J Taiwan Inst Chem Eng 45:1031–1042CrossRefGoogle Scholar
  3. 3.
    Daoud D, Douadi T, Issaadi S, Chafaa S (2014) Adsorption and corrosion inhibition of new synthesized thiophene schiff base on mild steel X52 in HCl and H2SO4 solutions. Corros Sci 79:50–58CrossRefGoogle Scholar
  4. 4.
    Ali SA, Al Muallem HA, Rahman SU, Saeed MT (2008) Bis-isoxazolidines: a new class of corrosion inhibitors of mild steel in acidic media. Corros Sci 50:3070–3077CrossRefGoogle Scholar
  5. 5.
    El Achouri M, Kertit S, Gouttaya HM, Nciri B, Bensouda Y, Perz L, Infante MR, El Kacemi K (2001) Corrosion inhibition of iron in 1 M HCl by some Gemini surfactants in the series of Alkanediyl-α, ω-bis-(dimethyl tetradecyl ammonium bromide). Prog Org Coat 43:267–273CrossRefGoogle Scholar
  6. 6.
    Memari B, El Attari H, Traisnel M, Bentiss F, Lagrenee M (1998) Inhibiting effects of 3,5-bis(n-pyridyl)-4-amino-1,2,4-triazoles on the corrosion for mild steel in 1 M HCl medium. Corros Sci 40:391–399CrossRefGoogle Scholar
  7. 7.
    Abboud Y, Tanane O, El Bouari A, Salghi R, Hammouti B, Chetouani A, Jodeh S (2016) Corrosion inhibition of carbon steel in hydrochloric acid solution using pomegranate leave extracts. Corros Sci Techn 51:557–565Google Scholar
  8. 8.
    Gopiraman M, Selvakumaran N, Kesavan D, Karvembu R (2012) Adsorption and corrosion inhibition behavior of N- (phenylcarbamothioyl) benzamide on mild steel in acidic medium. Prog Org Coat 73:104–111CrossRefGoogle Scholar
  9. 9.
    Yadav DK, Quraishi MA, Maiti B (2012) Inhibition effect of some benzylidenes on mild steel in 1 M HCl: an experimental and theoretical correlation. Corros Sci 55:254–266CrossRefGoogle Scholar
  10. 10.
    Yuce AO, Solmaz R, Karda G (2012) Investigation of inhibition effect of rhodamine-N-acetic acid on mild steel corrosion in HCl solution. Mater Chem Phys 131:615–620CrossRefGoogle Scholar
  11. 11.
    Keles H (2011) Electrochemical and thermodynamic studies to evaluate inhibition effect of 2-[(4-phenoxy-phenylimino) methyl]-phenol in1 M HCl on mild steel. Mater Chem Phys 130:1317–1324CrossRefGoogle Scholar
  12. 12.
    Kosari A, Momeni M, Parvizi R, Zakeri M, Moayed MH, Dvoodi A, Eshghi H (2011) Theoritical and electrochemical assessment of inhibitive behavior of some thiophenol derivatives on mild steel in HCl. Corros Sci 53:3058–3067CrossRefGoogle Scholar
  13. 13.
    Solmaz R (2014) Investigation of corrosion inhibition mechanism and stability of Vitamin B1on mild steel in 0.5 M HCl solution. Corros Sci 81:75–84CrossRefGoogle Scholar
  14. 14.
    Doner A, Sahin EA, Kardas G, Serindag O (2013) Investigation of corrosion inhibition effect of 3-[(2-hydroxy-benzylidene)amino]-2-thioxo-thiazolidin-4-one on corrosion of mild steel in the acidic medium. Corros Sci 66:278–284CrossRefGoogle Scholar
  15. 15.
    Doner A, Yüce AO, Kardas G (2013) Inhibition effect of rhodamine-N-acetic acid on copper corrosion in acidic media. Ind Eng Chem Res 52:9709–9718CrossRefGoogle Scholar
  16. 16.
    Solmaz R, Sahin EA, Doner A, Kardas G (2011) The investigation of synergistic inhibition effect of rhodamine and iodide ion on the corrosion of copper in sulphuric acid solution. Corros Sci 53:3231–3240CrossRefGoogle Scholar
  17. 17.
    Solmaz R (2010) Investigation of the inhibition effect of 5-((E)-4-phenylbuta-1,3-dienyllidene-amino)-1,3,4-thiadiazole-2-thiol Schiff base on mild steel corrosion in hydrochloric acid. Corros Sci 52:3321–3330CrossRefGoogle Scholar
  18. 18.
    Emregül KC, Hayvali M (2004) Studies on the effect of vanillin and protocatechualdehyde on the corrosion of steel in hydrochloric acid. Mater Chem Phys 83:209–216CrossRefGoogle Scholar
  19. 19.
    Goulart CM, Esteves-Souza A, Martinez-Huitle CA, Rodrigues CJF, Maciel MAM, Echevarria A (2013) Experimental and theoretical evaluation of semi carbazones and thiosemicarbazones as organic corrosion inhibitors. Corros Sci 67:281–291CrossRefGoogle Scholar
  20. 20.
    Aljourani J, Golozar MA, Raeissi K (2010) The inhibition of carbon steel corrosion in hydrochloric and sulfuric acid media using some benzimidazole derivatives. Mater Chem Phys 121:320–325CrossRefGoogle Scholar
  21. 21.
    Hasanov R, Bilge S, Bilgiç S, Gece G, Kiliç Z (2010) Experimental and theoretical calculations on corrosion inhibition of steel in 1 M H2SO4 by crown type polyethers. Corros Sci 52:984–990CrossRefGoogle Scholar
  22. 22.
    Xu F, Duan J, Zhang S, Hou B (2008) The inhibition of mild steel corrosion in 1 M hydrochloric acid solutions by triazole derivative. Mater Lett 62:4072–4074CrossRefGoogle Scholar
  23. 23.
    Khan G, Basirun WJ, Kazi SN, Ahmed P, Magaji L, Ahmed SM, Khan GM, Abdur Rehman M (2017) Electrochemical investigation on the corrosion inhibition of mild steel by Quinazoline Schiff base compounds in hydrochloric acid solution. J Colloid Interface Sci 502:134–145CrossRefGoogle Scholar
  24. 24.
    Fiala A, Chibani A, Darchen A, Boulkamh A, Djebbar K (2007) Investigation of the inhibition of copper corrosion in nitric acid solutions by ketene dithioacetal derivatives. Appl Surf Sci 253:9347–9356CrossRefGoogle Scholar
  25. 25.
    Yanai T, Tew DP, Handy NC (2004) A new hybrid exchange-correlation functional using the Coulomb-attenuating method (CAM-B3LYP). Chem Phys Lett 393(1–3):51–57CrossRefGoogle Scholar
  26. 26.
    Boukhedena W, Fiala A, Brahim Ladouani H, Lemallem SE, Hamdounib N, Boudjada A (2018) Crystal structure of ethyl 2-cyano-2-(1,3-dithian-2-ylidene)acetate. Acta Cryst E 74:65–68CrossRefGoogle Scholar
  27. 27.
    Neese F (2018) Software update: the ORCA program system, version 4.0. Wiley Interdiscip Rev 8:1327Google Scholar
  28. 28.
    Neese F (2012) The ORCA program system. Wiley Interdiscip Rev Comput Mol Sci 2:73–78CrossRefGoogle Scholar
  29. 29.
    Weigend F, Ahlrichs R (2005) Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: design and assessment of accuracy. Phys Chem Chem Phys 7:3297–3305CrossRefGoogle Scholar
  30. 30.
    Hanwell MD, Curtis DE, Lonie DC, Vandermeersch T, Zurek E, Hutchison GR (2012) Avogadro: an advanced semantic chemical editor, visualization, and analysis plat- form. J Cheminform 4(1):17CrossRefGoogle Scholar
  31. 31.
    Koopmans T (1934) Über die Zuordnung von Wellenfunktionen und Eigenwerten zu den Einzelnen Elektronen Eines Atoms. Physica 1:104–113CrossRefGoogle Scholar
  32. 32.
    Allal H, Belhocine Y, Zouaoui E (2018) Computational study of some thiophene derivatives as aluminium corrosion inhibitors. J Mol Liq 265:668–678CrossRefGoogle Scholar
  33. 33.
    Geerlings P, De Proft F, Langenaeker W (2003) Conceptual density functional theory. Chem Rev 103:1793–1874CrossRefGoogle Scholar
  34. 34.
    Yang W, Mortier WJ (1986) The use of global and local molecular parameters for the analysis of the gas-phase basicity of amines. J Am Chem Soc 108:5708–5711CrossRefGoogle Scholar
  35. 35.
    Yang W, Parr RG (1985) Hardness, softness, and the fukui function in the electronic theory of metals and catalysis. Proc Natl Acad Sci 82:6723–6726CrossRefGoogle Scholar
  36. 36.
    Fuentealba P, Reyes O (1993) Atomic softness and the electric dipole polarizability. J Mol Struct Theochem 282:65–70CrossRefGoogle Scholar
  37. 37.
    De Proft F, Martin JM, Geerlings P (1996) Calculation of molecular electrostatic potentials and Fukui functions using density functional methods. Chem Phys Lett 256:400–408CrossRefGoogle Scholar
  38. 38.
    Obot IB, Obi-Egbedi NO (2011) Anti-corrosive properties of xanthone on mild steel corrosion in sulphuric acid: experimental and theoretical investigations. Curr Appl Phys 11:382–392CrossRefGoogle Scholar
  39. 39.
    Hassanov R, Sadıkoğlu M, Bilgiç S (2007) Electrochemical and quantum chemical studies of some Schiff base on the corrosion of steel in H2SO4 solution. Appl Surf Sci 253:3913–3921CrossRefGoogle Scholar
  40. 40.
    Abboud Y, Abourriche A, Saffaj T, Berrada M, Charrouf M, Bennamara A, Hannache H (2009) A novel azo dye, 8-quinolinol-5-azoantipyrine as corrosion inhibitor for mild steel in acidic media. Desalination 237:175–189CrossRefGoogle Scholar
  41. 41.
    Muthukrishnan P, Kumar KS, Jeyaprabha B, Prakash P (2014) Anticorrosive activity of Kigelia pinnata leaves extract on mild steel in acidic media. Metall Mater Trans A 45:4510–4524CrossRefGoogle Scholar
  42. 42.
    Yadav DK, Quraishi MA (2012) Application of some condensed uracils as corrosion inhibitors for mild steel: gravimetric, electrochemical, surface morphological, UV-visible, and theoretical investigations. Ind Eng Chem Res 51:14966–14979CrossRefGoogle Scholar
  43. 43.
    Oguzie EE, Enenbeaku CK, Akalezi CO, Okoro SC, Ayuk AA, Ejike EN (2010) Adsorption and corrosion-inhibiting effect of Dacryodis edulis extract on low-carbon-steel corrosion in acidic media. J Colloid Interface Sci 349:283–292CrossRefGoogle Scholar
  44. 44.
    Da Silva AB, D’Elia E, Gomes JA (2010) Carbon steel corrosion inhibition in hydrochloric acid solution using a reduced Schiff base of ethylenediamine. Corros Sci 52:788–793CrossRefGoogle Scholar
  45. 45.
    Avci G (2008) Corrosion inhibition of indole-3-acetic acid on mild steel in 0.5 M HCl. Colloids Surf A 317:730–736CrossRefGoogle Scholar
  46. 46.
    Bentiss F, Bouaniss M, Mernari B, Traisnel M, Lagrenee M (2002) Effect of iodide ions on corrosion inhibition of mild steel by 3,5-bis(4-methylthiophenyl)-4H-1,2,4-triazole in sulfuric acid solution. J Appl Elechtrochem 32:671–678CrossRefGoogle Scholar
  47. 47.
    Heusler KE, Cartledge GH (1961) The influence of iodide ions and carbon monoxide on the anodic dissolution of active iron. J Electrochem Soc 108:732–740CrossRefGoogle Scholar
  48. 48.
    Bartos M, Hackerman N (1992) A study of inhibition action of Propargyl alcohol during anodic dissolution of iron in hydrochloric acid. J Electrochem Soc 139:3428–3433CrossRefGoogle Scholar
  49. 49.
    Bayol E, Kayakırılmaz K, Erbil M (2007) The inhibitive effect of hexamethylenetetramine on the acid corrosion of steel. Mater Chem Phys 104:74–82CrossRefGoogle Scholar
  50. 50.
    El Mehdi B, Mernari B, Traisnel M, Bentiss F, Lagrenée N (2003) Synthesis and comparative study of the inhibitive effect of some new triazole derivatives towards corrosion of mild steel in hydrochloric acid solution. Mater Chem Phys 77:489–496CrossRefGoogle Scholar
  51. 51.
    Lorentz WJ, Mansfeld F (1986) Interface and interphase corrosion inhibition. Electrochim Acta 31:467–476CrossRefGoogle Scholar
  52. 52.
    Pradeep Kumar CB, Mohana KN, Muralidhara HB (2015) Electrochemical and thermodynamic studies to evaluate the inhibition effect of synthesized piperidine derivatives on the corrosion of mild steel in acidic medium. Ionics 21:263–281CrossRefGoogle Scholar
  53. 53.
    Benahmed M, Djeddi N, Akkal S, Laouar H (2016) Saccocalyx satureioides as corrosion inhibitor for carbon steel in acid solution. Int J Ind Chem 7:109–120CrossRefGoogle Scholar
  54. 54.
    Bobina M, Kellenberger A, Millet JP, Muntean C, Vaszilcsin N (2013) Corrosion resistance of carbon steel in weak acid solutions in the presence of l-histidine as corrosion inhibitor. Corros Sci 69:389–395CrossRefGoogle Scholar
  55. 55.
    Lebrini M, Robert F, Lecante A, Roos C (2011) Corrosion inhibition of C38 steel in 1 M hydrochloric acid medium by alkaloids extract from Oxandra asbeckii plant. Corros Sci 53:687–695CrossRefGoogle Scholar
  56. 56.
    Djeddi N, Benahmed M, Akkal S, Laouer H, Makhloufi E, Gherraf N (2015) Study on methylene dichloride and butanolic extracts of Reutera lutea (Desf.) Maire (Apiaceae) as effective corrosion inhibitions for carbon steel in HCl solution. Res Chem Intermed 41:4595–4616CrossRefGoogle Scholar
  57. 57.
    Li XH, Deng SD, Fu H (2010) Inhibition by Jasminum nudiflorum Lindl leaves extract of the corrosion of cold rolled steel in hydrochloric acid solution. J Appl Electrochem 40:1641–1649CrossRefGoogle Scholar
  58. 58.
    Behpour M, Ghoreishi SM, Khayatkashani M, Soltani N (2012) Green approach to corrosion inhibition of mild steel in tow acidic solutions by the extracts of Punicagranatum peel main constituents. Mater Chem Phys 131:621–633CrossRefGoogle Scholar
  59. 59.
    Deng S, Li X (2012) Inhibition by Ginkgo leaves extract of the corrosion of steel in HCl and H2SO4 solutions. Corros Sci 55:404–415CrossRefGoogle Scholar
  60. 60.
    Quraishi MA, Sudheer Ebenso E (2012) Ketorol: new and effective corrosion inhibitor for mild steel in hydrochloric acid solution. Int J Electrochem Sci 7:9920–9932Google Scholar
  61. 61.
    Fiala A, Mechehoud Y (2012) Etude de l’effet inhibiteur du 2-(1,3-dithietan-2-ylidene)-3-oxobutanoate de méthyle et du 2-(1,3-dithiolan-2-ylidene)-3-oxobutanoate de méthyle sur la corrosion du cuivre en milieu nitrique 3 mol L−1. Sci Technol A 35:23–30Google Scholar
  62. 62.
    Patel Niketan S, Snita Dalimil (2014) Ethanol extracts of Hemidesmus indicus leaves as eco-friendly inhibitor of mild steel corrosion in H2SO4 medium. Chem Pap 68:1747–1754CrossRefGoogle Scholar
  63. 63.
    Zarrouk A, Hammouti B, Lakhlifi T, Traisnel M, Vezin H, Bentiss F (2015) New 1H-pyrrole-2,5-dione derivatives as efficient organic inhibitors of carbon steel corrosion in hydrochloric acid medium: electrochemical, XPS and DFT studies. Corros Sci 90:572–584CrossRefGoogle Scholar
  64. 64.
    Li X, Deng S, Fu H (2012) Inhibition of the corrosion of steel in HCl, H2SO4 solutions by bamboo leaf extract. Corros Sci 62:163–175CrossRefGoogle Scholar
  65. 65.
    Ostovari A, Hoseinieh SM, Peikari M, Shadizadeh SR, Hashemi SJ (2009) Corrosion inhibition of mild steel in 1 M HCl solution by henna extract: a comparative study of the inhibition by henna and its constituents (Lawsone, Gallic acid, α-d-Glucose and tannic acid). Corros Sci 51:1935–1949CrossRefGoogle Scholar
  66. 66.
    Bentiss F, Lebrini M, Lagrenee M (2005) Thermodynamic characterization of metal dissolution and inhibitor adsorption process in mild steel/2,5-bis(n-thienyl)1,3,4-thiadiazoles/hydrochloric acid system. Corros Sci 47:2915–2931CrossRefGoogle Scholar
  67. 67.
    Daoud D, Douadi T, Hamani H, Chafaa S, Al-Nouaimi M (2015) Corrosion inhibition of mild steel by two new S-heterocyclic compounds in 1 M HCl: experimental and computational study. Corros Sci 94:21–37CrossRefGoogle Scholar
  68. 68.
    Mertens SF, Xhoffer C, De Cooman BC, Temmerman E (1997) Short-term deterioration of polymer-coated 55% Al-Zn-Part 1: behavior of thin polymer films. Corrosion 53:381–388CrossRefGoogle Scholar
  69. 69.
    Pitchaipillai M, Raj K, Balasubramanian J, Periakaruppan P (2014) Benevolent behavior of Kleinia grandiflora leaf extract as a green corrosion inhibitor for mild steel in sulfuric acid solution. Int J Min Met Mater 21:1083–1095CrossRefGoogle Scholar
  70. 70.
    Lv TM, Zhu SH, Guo L, Zhang ST (2015) Experimental and theoretical investigation of indole as a corrosion inhibitor for mild steel in sulfuric acid solution. Res Chem Intermed 41:7073–7093CrossRefGoogle Scholar
  71. 71.
    Hegazy MA, Abdallah M, Awad MK, Rezk M (2014) Three novel di-quaternary ammonium salts as corrosion inhibitors for API X65 steel pipeline in acidic solution. Part I: experimental results. Corros Sci 81:54–64CrossRefGoogle Scholar
  72. 72.
    Umoren SA, Obot IB (2008) Polyvinylpyrollidone and polyacrylamide as corrosion inhibitors for mild steel in acidic medium. Surf Rev Lett 15:277–286CrossRefGoogle Scholar
  73. 73.
    Ebenso EE (2003) Synergistic effect of halide ions on the corrosion inhibition of aluminium in H2SO4 using 2-acetylphenothiazine. Mater Chem Phys 79:58–70CrossRefGoogle Scholar
  74. 74.
    Singh MR, Bhrara K, Singh G (2008) The inhibitory effect of diethanolamine on corrosion of mild steel in 0.5 M sulphuric acidic medium. Portugaliae Electrochimica Acta 26:479–492CrossRefGoogle Scholar
  75. 75.
    Obot IB, Obi-Egbedi NO (2008) Inhibitory effect and adsorption characteristics of 2,3-diaminonaphthalene at aluminum/hydrochloric acid interface: experimental and theoretical study. Surf Rev Lett 15:903–910CrossRefGoogle Scholar
  76. 76.
    Al-Fakih AM, Aziz M, Sirat HM (2015) Turmeric and ginger as green inhibitors of mild steel corrosion in acidic medium. J Mater Environ Sci 6:1480–1487Google Scholar
  77. 77.
    Fouda AS, Al-Sarawy AA, El-Katori EE (2006) Pyrazolone derivatives as corrosion inhibitors for C-steel HCl solution. Desalination 201:1–13CrossRefGoogle Scholar
  78. 78.
    Sultan AA, Ateeq AA, Khaled NI, Taher MK, Khalaf MN (2014) Study of some natural products as eco – friendly corrosion inhibitor for mild steel in 1.0 M HCl solution. J Mater Environ Sci 5:498–503Google Scholar
  79. 79.
    Solmaze R, Kardas G, Yazici B, Erbil M (2008) Adsorption and corrosion inhibitive properties of 2-amino-5-mercapto-1,3,4-thiadiazole on mild steel in hydrochloric acid media. Colloids Surf A Physicochem Eng Asp 312:7–17CrossRefGoogle Scholar
  80. 80.
    Lagrenée M, Mernari B, Bouanis M, Traisnel M, Bentiss F (2002) Study of the mechanism and inhibiting efficiency of 3,5-bis(4-methylthiophenyl)-4H-1,2,4-triazole on mild steel corrosion in acidic media. Corros Sci 44:573–588CrossRefGoogle Scholar
  81. 81.
    Behpour M, Ghoreishi SM, Soltani N, Salvati-Niasari M, Hamadanian M, Gandomi A (2008) Electrochemical and theoretical investigation on the corrosion inhibition of mild steel by thiosalicylaldehyde derivatives in hydrochloric acid solution. Corros Sci 50:2172–2181CrossRefGoogle Scholar
  82. 82.
    Likhanova NV, Domínguez-Aguilar MA, Olivares-Xometl O, Nava-Entzana N, Arce E, Dorantes H (2010) The effect of ionic liquids with imidazolium and pyridinium cations on the corrosion inhibition of mild steel in acidic environment. Corros Sci 52:2088–2097CrossRefGoogle Scholar
  83. 83.
    Zhang D, Li L, Cao L, Yang N, Huang C (2001) Studies of corrosion inhibitors for zinc–manganese batteries: quinoline quaternary ammonium phenolates. Corros Sci 43:1627–1636CrossRefGoogle Scholar
  84. 84.
    Haque J, Srivastava V, Verma C, Quraishi MA (2017) Experimental and quantum chemical analysis of 2-amino-3-((4-((S)-2-amino-2-carboxyethyl)-1H-imidazol-2-yl)thio) propionic acid as new and green corrosion inhibitor for mild steel in 1 M hydrochloric acid solution. J Mol Liq 225:848–855CrossRefGoogle Scholar
  85. 85.
    Verma C, Ebenso EE, Vishal Y, Quraishi MA (2016) Dendrimers: a new class of corrosion inhibitors for mild steel in 1 M HCl: experimental and quantum chemical studies. J Mol Liq 224:1282–1293CrossRefGoogle Scholar
  86. 86.
    Verma C, Quraishi MA, Singh A (2016) A thermodynamical, electrochemical, theoretical and surface investigation of diheteroaryl thioethers as effective corrosion inhibitors for mild steel in 1 M HCl. J Taiwan Ins Chem Eng 58:127–140CrossRefGoogle Scholar
  87. 87.
    Antonijevic MM, Petrovic MB (2008) Copper Corrosion Inhibitors. A review. Int J Electrochem Sci 3:1–28Google Scholar
  88. 88.
    Costa JM, Lluch JM (1984) The use of quantum mechanics calculations for the study of corrosion inhibitors. Corros Sci 24:924–993CrossRefGoogle Scholar
  89. 89.
    Breneman CM, Wiberg KB (1990) Determining atom-centered monopoles from molecular electrostatic potentials. The need for high sampling density in formamide conformational analysis. J Comput Chem 11:176–179CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Chemistry Research Unit Environmental and Structural MolecularCHEMS. Mentouri Brothers Constantine 1 UniversityConstantineAlgeria
  2. 2.Department of Science MatterLarbi Tebessi UniversityTebessaAlgeria
  3. 3.Department of Technology, Faculty of Technology20 August 1955 Skikda UniversitySkikdaAlgeria

Personalised recommendations