Advertisement

Surface Modification Methods for Titanium and Its Alloys and Their Corrosion Behavior in Biological Environment: A Review

  • Y. SasikumarEmail author
  • K. IndiraEmail author
  • N. RajendranEmail author
Article
  • 24 Downloads

Abstract

Titanium (Ti) and its alloys are being used in biomedical field owing to their low elastic modulus, good fatigue strength and formability, and corrosion resistance. However, they are still not sufficient for long-term clinical usage as they are bio-inert and they cannot bond to living bone directly at the early stage after implantation into a human body. Their surfaces play an important role in response to the artificial devices in a biological environment; for these materials to meet the clinical demands, it is necessary to modify their surface. The corrosion resistance and biological properties of Ti and its alloys can be improved selectively by using the appropriate surface modification techniques while the desirable bulk attributes of the materials are retained. The proper surface treatment expands the use of these materials in the biomedical field. This article reviews the various surface modification techniques for Ti and its alloys including mechanical methods, chemical and electrochemical treatment, thermal spraying, sol–gel, and ion implantation towards the field of biomedical engineering. A positive effect of various surface modification techniques is illustrated in this review as suggested by many research groups. Also, this article includes the corrosion behavior of surface-modified Ti and its alloys for biomedical applications.

Keywords

Titanium alloys Surface modification Coating methods Simulated body fluid Corrosion behavior Biomaterials 

Notes

Acknowledgements

The authors Dr. Y. Sasikumar and Dr. N. Rajendran acknowledge the financial support received from the Indian Council for Medical Research (ICMR), New Delhi, India. The facilities provided by DST-FIST and UGC-DRS are gratefully acknowledged.

Compliance with Ethical Standards

Conflict of interest

There is no conflict of interest in this article.

References

  1. 1.
    Kuroda D, Niinomi M, Morinaga M, Kato Y, Yashiro T (1998) Design and mechanical properties of new beta-type titanium alloys for implant materials. Mater Sci Eng A 243:244–249CrossRefGoogle Scholar
  2. 2.
    Niinomi M (1998) Development of β type titanium alloys for implant materials. Mater Japan 37:843–846CrossRefGoogle Scholar
  3. 3.
    Nino M, Hanawa T, Narushima T (2005) Japanese research and development in metallic biomedical dental and healthcare materials. JOM 57:18–24Google Scholar
  4. 4.
    Yamamuro T (1989) Patterns of osteogenesis in relation to various biomaterials. J Japan Soc Biomater 7:19–23Google Scholar
  5. 5.
    Gintaras J, Marija S (2003) Ann Wennerberg. New acid etched titanium dental implant surface. Stomatol Balt Dent Maxillofac J 5:101–105Google Scholar
  6. 6.
    Mohammed MT, Khan ZA, Siddiquee AN, Polmear JJ (1981) Titanium alloys, in: light alloys. Edward Arnold Publications, London (Chap. 6)Google Scholar
  7. 7.
    Bania PJ (1993) Beta titanium alloys and their role in the titanium industry. In: Eylon D, Boyer RR, Koss DA (eds) Titanium alloys in the 1990’s. The Mineral, Metals & Materials Society, Warrendale, pp. 3–14Google Scholar
  8. 8.
    Schutz RW (1993) An overview of beta titanium alloy environmental behavior. In: Eylon D, Boyer RR, Koss DA (eds) Beta titanium alloys in the 1990’s. The Mineral, Metals & Materials Society, Warrendale, pp. 75–91Google Scholar
  9. 9.
    Spector M (1992) Biomaterial failure. Orthop Clin N Am 23:211–217Google Scholar
  10. 10.
    Wu C (1996) DNA links gold into new materials. Sci News 150:100CrossRefGoogle Scholar
  11. 11.
    Urban RM, Jacobs JJ, Gilbert JL (1993) Corrosion products of modular hip protheses: micromechanical identification and histopathological significance. Trans Orthop Res Soc 18:81–90Google Scholar
  12. 12.
    Gilbert JL, Buckley CA, Jacobs JJ, Bertin KC, Zernich MR (1994) Intergranular corrosion fatigue failure of cobalt-alloy femoral stems. J Bone Jt Surg Am 76:110–115CrossRefGoogle Scholar
  13. 13.
    Liu X, Chu PK, Chuanxian D (2004) Surface modification of titanium, titanium alloys, and related materials for biomedical applications. Mater Sci Eng R 47:49–121CrossRefGoogle Scholar
  14. 14.
    Lausmaa J, Kasemo B, Mattsson H (1990) Surface spectroscopic characterization of titanium implant materials. Appl Surf Sci 44:133–146CrossRefGoogle Scholar
  15. 15.
    Sutherland DS, Forshaw PD, Allen GC, Brown IT, Williams KR (1993) Surface analysis of titanium implants. Biomaterials 14:893–899CrossRefGoogle Scholar
  16. 16.
    Lucchini JP, Aurelle JL, Therin M, Donath K, Becker W (1996) A pilot study comparing screw-shaped implants. Surface analysis and histologic evaluation of bone healing. Clin Oral Implants Res 7:397–404CrossRefGoogle Scholar
  17. 17.
    Hignett B, Andrew TC, Downing W, Duwell EJ, Belanger J, Tulinski EH (1987) Surface cleaning, finishing and coating. In: Wood WG (ed) Metals handbook, vol 5. American Society for Metals, Metals Park, pp. 107–127Google Scholar
  18. 18.
    Buser D, Nydegger T, Oxland T, Cochran DL, Schenk RK, Hirt HP, Snetivy D, Nolte LP (1999) Interface shear strength of titanium implants with a sandblasted and acid etched surface: a biomechanical study in the maxilla of miniature pigs. J Biomed Mater Res 45:75–83CrossRefGoogle Scholar
  19. 19.
    Baleani M, Viceconti M, Toni A (2000) The effect of sandblasting treatment on endurance properties of titanium alloy hip prostheses. Artif Organs 24:296–299CrossRefGoogle Scholar
  20. 20.
    Degasne I, Basle MF, Demais V, Hure G, Lesourd M, Grolleau B, Mercier L, Chappard D (1999) Effects of roughness, fibronectin and vitronectin on attachment, spreading, and proliferation of human osteoblast-like cells (Saos-2) on titanium surfaces. Calcif Tissue Int 64:499–507CrossRefGoogle Scholar
  21. 21.
    Kern M, Thompson VP (1994) Effects of sandblasting and silica-coating procedures on pure titanium. J Dent 22:300–306CrossRefGoogle Scholar
  22. 22.
    Wennerberg A, Albrektsson T, Johansson C, Andersson B (1996) Experimental study of turned and grit-blasted screw-shaped implants with special emphasis on effects of blasting material and surface topography. Biomaterials 17:15–22CrossRefGoogle Scholar
  23. 23.
    Wennerberg A, Albrektsson T, Lausmaa J (1996) Torque and histomorphometric evaluation of c.p. titanium screws blasted with 25-and 75-microns-sized particles of Al2O3. J Biomed Mater Res 30:251–260CrossRefGoogle Scholar
  24. 24.
    Lausmaa J (2001) Material science, surface science, engineering, biological responses and medical applications. In: Brunette DM, Tengvall P, Textor M, Thomsen P (eds) Titanium in medicine. Springer, Berlin, pp 231–266CrossRefGoogle Scholar
  25. 25.
    Nanci A, Wuest JD, Peru L, Brunet P, Sharma V, Zalzal S, McKee MD (1998) Chemical modification of titanium surfaces for covalent attachment of biological molecules. J Biomed Mater Res 40:324–335CrossRefGoogle Scholar
  26. 26.
    Schwartz Z, Martin JY, Dean DD, Simpson J, Cochran DL, Boyan BD (1996) Effect of titanium surface roughness on chondrocyte proliferation, matrix production, and differentiation depends on the state of cell maturation. J Biomed Mater Res 30:145–155CrossRefGoogle Scholar
  27. 27.
    American Society for Testing and Materials, ASTM Standard B600 (1997) Annual book of ASTM standard, vol 2.04. American Society for Testing and Materials, PhiladelphiaGoogle Scholar
  28. 28.
    Takeuchi M, Abe Y, Yoshida Y, Nakayama Y, Okazaki M, Kagawa Y (2003) Acid pretreatment of titanium implants. Biomaterials 24:1821–1827CrossRefGoogle Scholar
  29. 29.
    Sittig C, Textor M, Spencer ND, Wieland M, Vallotton PH (1999) Surface characterization of implant materials c.p. Ti, Ti-6Al-7Nb and Ti-6Al-4V with different pretreatments. J Mater Sci Mater Med 10:35–46CrossRefGoogle Scholar
  30. 30.
    Taborelli M, Jobin M, Francois P, Tonetti P, Szmukler-Mocler S, Simpson JP. Descouts P (1997) Influence of surface treatments developed for oral implants on the physical and biological properties of titanium.(I) Surface characterization. Clin Oral Implants Res 8:208–216CrossRefGoogle Scholar
  31. 31.
    Wen HB, Wolke JG, Wijn JR, Liu Q, Cui FZ, de Groot K (1997) Fast precipitation of calcium phosphate layers on titanium induced by simple chemical treatments. Biomaterials 18:1471–1478CrossRefGoogle Scholar
  32. 32.
    Wen HB, Liu Q, Wijn de JR, de Groot K, Cui FZ (1998) Preparation of bioactive microporous titanium surface by a new two-step chemical treatment. J Mater Sci Mater Med 9:121–128CrossRefGoogle Scholar
  33. 33.
    Ban S, Iwayab Y, Konoa H, Satoa H (2006) Surface modification of titanium by etching in concentrated sulfuric acid. Dent Mater 22:1115–1120CrossRefGoogle Scholar
  34. 34.
    Sasikumar Y, Rajendran N (2017) Effect of acid treatment on the surface modification of Ti-6Al-7Nb and Ti-5Al-2Nb-1Ta and its electrochemical investigations in simulated body fluid. J Bio Tribo Corros 3:41.  https://doi.org/10.1007/s40735-017-0096-x CrossRefGoogle Scholar
  35. 35.
    Peltola T, Patsi M, Rahiala H, Kangasiemi I, Yli-Urpo A (1998) Calcium phosphate induction by sol-gel-derived titania coatings on titanium substrates in vitro. J Biomed Mater Res 41:504–510CrossRefGoogle Scholar
  36. 36.
    Li P, Ohtsuki C, Kokubo T, Nakanishi K, Soga N, de Groot K (1994) The role of hydrated silica, titania, and alumina in inducing apatite on implants. J Biomed Mater Res 28:7–15CrossRefGoogle Scholar
  37. 37.
    Peltola T, Jokinen M, Rahiala H, Levanen E, Rosenholm JB, Kangasiemi I, Yli-Urpo A (1999) Calcium phosphate formation on porous sol-gel-derived SiO2 and CaO-P2O5-SiO2 substrates in vitro. J Biomed Mater Res 44:12–21CrossRefGoogle Scholar
  38. 38.
    Tengvall P, Lundström I (1992) Physico-chemical considerations of titanium as a biomaterial. Clin Mater 9:115–134CrossRefGoogle Scholar
  39. 39.
    Tengvall P, Lundström I, Sjoqvist L, Elwing H, Bjursten LM (1989) Titanium–hydrogen peroxide interaction: model studies of the influence of the inflammatory response on titanium implants. Biomaterials 10:166–175CrossRefGoogle Scholar
  40. 40.
    Tengvall P, Elwing H, Sjoqvist L, Lundström I, Bjursten LM (1989) Interaction between hydrogen peroxide and titanium: a possible role in the biocompatibility of titanium. Biomaterials 10:118–120CrossRefGoogle Scholar
  41. 41.
    Walivaara B, Lundström I, Tengvall P (1993) An in-vitro study of H2O2 treated titanium surfaces in contact with blood plasma and a simulated body fluid. Clin Mater 12:141–148CrossRefGoogle Scholar
  42. 42.
    Walivaara B, Aronsson BO, Rodahl M, Lausmma J, Tengvall P (1994) Titanium with different oxides: in vitro studies of protein adsorption and contact activation. Biomaterials 15:827–834CrossRefGoogle Scholar
  43. 43.
    Pan J, Thierry D, Leygraf C (1996) Hydrogen peroxide toward enhanced oxide growth on titanium in PBS solution: blue coloration and clinical relevance. J Biomed Mater Res 30:393–402CrossRefGoogle Scholar
  44. 44.
    Pan J, Liao H, Leygraf C, Thierry D, Li J (1998) Variation of oxide films on titanium induced by osteoblast-like cell culture and the influence of an H2O2 pretreatment. J Biomed Mater Res 40:244–256CrossRefGoogle Scholar
  45. 45.
    Ohtsuki C, Iida H, Hayakawa S, Osaka A (1997) Bioactivity of titanium treated with hydrogen peroxide solutions containing metal chlorides. J Biomed Mater Res 35:39–47CrossRefGoogle Scholar
  46. 46.
    Wang X, Hayakawab S, Tsurub K, Osaka A (2002) Bioactive titania gel layers formed by chemical treatment of Ti substrate with a H2O2/HCl solution. Biomaterials 23:1353–1357CrossRefGoogle Scholar
  47. 47.
    Wang X, Hayakawa S, Tsuru K, Osaka A (2000) Improvement of bioactivity of H2O2/TaCl5-treated titanium after subsequent heat treatments. J Biomed Mater Res 52:171–176CrossRefGoogle Scholar
  48. 48.
    Karthega M, Rajendran N (2012) Formation of nanoporous oxide layer over a binary beta-phase titanium in simulated body fluid. J Porous Mater 19:573–577CrossRefGoogle Scholar
  49. 49.
    Karthega M, Nagarajan S, Rajendran N (2010) In vitro studies of hydrogen peroxide treated titanium for biomedical applications. Electrochim Acta 55:2201–2209CrossRefGoogle Scholar
  50. 50.
    Karthega M, Rajendran N (2010) Hydrogen peroxide treatment on Ti–6Al–4V alloy: a promising surface modification technique for orthopaedic application. Appl Surf Sci 256:2176–2183CrossRefGoogle Scholar
  51. 51.
    Kokubo T, Ito S, Huang ZT, Hayashi T, Sakka S, Kitsugi T, Yamamuro T (1990) CaP-rich layer formed on high-strength bioactive glass-ceramic A-W. J Biomed Mater Res 24:331–343CrossRefGoogle Scholar
  52. 52.
    Lee BH, Kim YD, Shin JH, Lee KH (2002) Surface modification by alkali and heat treatments in titanium alloys. J Biomed Mater Res 61:466–473CrossRefGoogle Scholar
  53. 53.
    Hench LL, Andersson O (1993) Bioactive glass. In: Hench LL, Wilson J (eds) An introduction to bioceramics. World Scientific, Singapore, pp 41–62CrossRefGoogle Scholar
  54. 54.
    Legeros RZ, LeGeros JP (1993) Dense hydroxyapatite. In: Hench LL, Wilson J (eds) An introduction to bioceramics. World Scientific, Singapore, pp 139–180CrossRefGoogle Scholar
  55. 55.
    Sasikumar Y, Karthega M, Rajendran N (2011) In vitro bioactivity of surface-modified β-Ti alloy for biomedical applications. J Mater Eng Perform 20:1271–1277CrossRefGoogle Scholar
  56. 56.
    Fujibayashi S, Nakamura T, Nishiguchi S, Tamura J, Uchida M, Kim HM, Kokubo T (2001) Bioactive titanium: effect of sodium removal on the bone-bonding ability of bioactive titanium prepared by alkali and heat treatment. J Biomed Mater Res 56:562–570CrossRefGoogle Scholar
  57. 57.
    de Andrade MC, Filgueiras MRT, Ogasawara T (1999) Nucleation and growth of hydroxyapatite on titanium pretreated in NaOH solution: experiments and thermodynamic explanation. J Biomed Mater Res 46:441–446CrossRefGoogle Scholar
  58. 58.
    Yang BC, Weng J, Li XD, Zhang XD (1999) The order of calcium and phosphate ion deposition on chemically treated titanium surfaces soaked in aqueous solution. J Biomed Mater Res 47:213–219CrossRefGoogle Scholar
  59. 59.
    Jonasova L, Muller FA, Helebrant A, Strnad J, Greil P (2004) Biomimetic apatite formation on chemically treated titanium. Biomaterials 25:1187–1194CrossRefGoogle Scholar
  60. 60.
    Wang CX, Wang M, Zhou X (2003) Nucleation and growth of apatite on chemically treated titanium alloy: an electrochemical impedance spectroscopy study. Biomaterials 24:3069–3077CrossRefGoogle Scholar
  61. 61.
    Wang CX, Wang M (2002) Electrochemical impedance spectroscopy study of the nucleation and growth of apatite on chemically treated pure titanium. Mater Lett 54:30–36CrossRefGoogle Scholar
  62. 62.
    Raman V, Tamilselvi S, Rajendran N (2007) Electrochemical impedance spectroscopic characterization of titanium during alkali treatment and apatite growth in simulated body fluid. Electrochim Acta 52:7418–7424CrossRefGoogle Scholar
  63. 63.
    Tamilselvi S, Raman V, Rajendran N (2010) Evaluation of corrosion behavior of surface modified Ti-6Al-4V ELI alloy in hanks solution. J Appl Electrochem 40:285–293CrossRefGoogle Scholar
  64. 64.
    Lu X, Leng Y (2004) TEM study of calcium phosphate precipitation on bioactive titanium surfaces. Biomaterials 25:1779–1786CrossRefGoogle Scholar
  65. 65.
    Kim H-W, Koh Y-H, Li L-H, Lee S, Kim H-E (2004) Hydroxyapatite coating on titanium substrate with titania Buffet layer processed by sol-gel method. Biomaterials 25:2533–2538CrossRefGoogle Scholar
  66. 66.
    Samuneva B, Kozhukharov V, Trapalis C, Kranold R (1993) Sol-gel processing of titanium-containing thin coatings. J Mater Sci 28:2353–2360CrossRefGoogle Scholar
  67. 67.
    Trapalis C, Kozhukharov V, Samuneva B, Stefanov P (1993) Sol-gel processing of titanium-containing thin coatings part II—XPS studies. J Mater Sci 28:1276–1282CrossRefGoogle Scholar
  68. 68.
    Kozhukharov V, Trapalis C, Samuneva B (1993) Sol-gel processing of titanium-containing thin coatings part III properties. J Mater Sci 28:1283–1288CrossRefGoogle Scholar
  69. 69.
    Pa¨tsi ME, Hautaniemi JA, Rahiala HM, Peltola TO, Kangasniemi IMO (1998) Sol-gel derived coatings on titanium. J Sol Gel Sci Technol 11:55–66CrossRefGoogle Scholar
  70. 70.
    Dieudonne SC, van den Dolder J, de Ruijter JE, Paldan H, Peltola T, van’t Hof MA, Happonen RP, Jansen JA (2002) Osteoblast differentiation of bone marrow stromal cells cultured on silica gel and sol-gel-derived titania. Biomaterials 23:3041–3051CrossRefGoogle Scholar
  71. 71.
    Li P, de Groot K (1993) Calcium phosphate formation within sol-gel prepared titania in vitro and in vivo. J Biomed Mater Res 27:1495–1500CrossRefGoogle Scholar
  72. 72.
    Müller-Mai C, Kangasniemi I, Li P, Yli-Urpo A, Voigt C, Kandilakis K, Gross U (1994) Solgel-produced Ti-coatings on titanium implants in bone. In: Andersson ÖH, Yli-Urpo A (eds) Bioceramics, vol 7. Butterworth-Heinemann, Turku, pp. 159–164CrossRefGoogle Scholar
  73. 73.
    Liu JX, Yang DZ, Shi F, Cai YJ (2003) Sol–gel deposited TiO2 film on NiTi surgical alloy for biocompatibility improvement. Thin Solid Films 429:225–230CrossRefGoogle Scholar
  74. 74.
    Milella E, Cosentino F, Licciulli A, Massaro C (2001) Preparation and characterisation of titania/hydroxyapatite composite coatings obtained by sol–gel process. Biomaterials 22:1425–1431CrossRefGoogle Scholar
  75. 75.
    Ramires PA, Romito A, Cosentino F, Milella E (2001) The influence of titania/ hydroxyl apatite composite coatings on in vitro osteoblasts behaviour. Biomaterials 22:1467–1474CrossRefGoogle Scholar
  76. 76.
    Indira et al (2012) Effect of anodization parameters on the structural morphology of titanium in fluoride containing electrolytes. Mater Charact 71:58–65CrossRefGoogle Scholar
  77. 77.
    Indira K (2015) Development of titanium nanotube arrays for orthopaedic applications. Dissertation, Anna University. http://shodhganga.inflibnet.ac.in/handle/10603/37614
  78. 78.
    Indira et al (2015) A review on TiO2 nanotubes: influence of anodization parameters, formation mechanism, properties, corrosion behavior and biomedical applications. J Bio Tribo Corros 1:28.  https://doi.org/10.1007/s40735-015-0024-x CrossRefGoogle Scholar
  79. 79.
    Sul YT, Johansson CB, Jeong Y, Albrektsson T (2001) The electrochemical oxide growth behaviour on titanium in acid and alkaline electrolytes. Med Eng Phys 23:329–346CrossRefGoogle Scholar
  80. 80.
    Yang B, Uchida M, Kim H-M, Zhang X, Kokubo T (2004) Preparation of bioactive titanium metal via anodic oxidation treatment. Biomaterials 25:1003–1010CrossRefGoogle Scholar
  81. 81.
    Indira et al (2017) Development of self-assembled titania nanopore arrays for orthopaedic applications. J Biol Tribo Corros 3:9.  https://doi.org/10.1007/s40735-016-0068-6 CrossRefGoogle Scholar
  82. 82.
    Indira et al (2014) In-vitro biocompatibility and corrosion resistance of strontium ions incorporated TiO2 nanotube arrays for orthopaedic applications. J Biomater Appl 29:113–129CrossRefGoogle Scholar
  83. 83.
    Indira et al (2013) Corrosion behavior of electrochemically assembled nanoporous titania for biomedical applications. Ceram Int 39:959–967CrossRefGoogle Scholar
  84. 84.
    Indira et al (2014) In-vitro bioactivity and corrosion behaviour of zirconium incorporated titanium oxide nanotube arrays for orthopaedic applications. Appl Surf Sci 316:264–275CrossRefGoogle Scholar
  85. 85.
    Mohan L, Anandan C, Rajendran N (2015) Electrochemical behavior and effect of heat treatment on morphology, crystalline structure of self-organized TiO2 nanotube arrays on Ti–6Al–7Nb for biomedical applications. Mater Sci Eng 50:394–401CrossRefGoogle Scholar
  86. 86.
    Mohan L, Anandan C, Rajendran N (2015) Electrochemical behaviour and bioactivity of self-organized TiO2 nanotube arrays on Ti-6Al-4V in Hanks’ solution for biomedical applications. Electrochim Acta 155:411–420CrossRefGoogle Scholar
  87. 87.
    Mohan L, Anandan C, Rajendran N (2016) Drug release characteristics of quercetin-loaded TiO2 nanotubes coated with chitosan. Int J Biol Macromol 93:1633–1638CrossRefGoogle Scholar
  88. 88.
    Mohan L, Anandan C, Rajendran N (2015) Effect of plasma nitriding on structure and biocompatibility of self-organized TiO2 nanotubes on Ti-6Al-7Nb. RSC Adv 5:41763–41771CrossRefGoogle Scholar
  89. 89.
    Ohring M (2002) Materials sciences of thin film: deposition and structure, Academic Press Ltd., San DiegoGoogle Scholar
  90. 90.
    Tang L, Tsaiff C, Gerberich WW, Kruckebeu L, Kania DR (1995) Biocompatibility of chemical-vapour-deposited diamond. Biomaterials 16:483–488CrossRefGoogle Scholar
  91. 91.
    Heinrich G, Gro¨gler T, Rosiwal SM, Singer RF (1997) CVD diamond coated titanium alloys for biomedical and aerospace applications. Surf Coat Technol 94–95:514–520CrossRefGoogle Scholar
  92. 92.
    Allen M, Myer B, Rushton N (2001) In vitro and in vivo investigations into the biocompatibility of diamond-like carbon (DLC) coatings for orthopedic applications. J Biomed Mater Res 58:319–328CrossRefGoogle Scholar
  93. 93.
    Jones MI, McColl IR, Grant DM, Parker KG, Parker TL (2000) Protein adsorption and platelet attachment and activation, on TiN, TiC, and DLC coatings on titanium for cardiovascular applications. J Biomed Mater Res 52:413–421CrossRefGoogle Scholar
  94. 94.
    Jones MI, McColl IR, Grant DM, Parker KG, Parker TL (1999) Haemocompatibility of DLC and TiC–TiN interlayers on titanium. Diam Relat Mater 8:457–462CrossRefGoogle Scholar
  95. 95.
    Parker TL, Parker KL, McColl IR, Grant DM, Wood JV (1994) The biocompatibility of low temperature diamond-like carbon films: a transmission electron microscopy, scanning electron microscopy and cytotoxicity study. Diam Relat Mater 3:1120–1123CrossRefGoogle Scholar
  96. 96.
    Butter R, Allen M, Chandra L, Lettingon AH, Rushton N (1995) In vitro studies of DLC coatings with silicon intermediate layer. Diam Relat Mater 4:857–861CrossRefGoogle Scholar
  97. 97.
    Chen Z, Zhou K, Li Z (2015) Steam-induced changes in surface characteristics and corrosion resistance of spark-anodized titanium. Thin Solid Films 584:161–164CrossRefGoogle Scholar
  98. 98.
    Joanna K, Faiz M, Grzegorz C, Huseyin C, Aleksandra C (2017) Influence of electrolyte composition on microstructure, adhesion and bioactivity of micro-arc oxidation coatings produced on biomedical Ti6Al7Nb alloy. Surf Coat Technol 321:97–107CrossRefGoogle Scholar
  99. 99.
    Zhaoxiang C, Kun Z (2015) Surface morphology, phase structure and property evolution of anodized titanium during water vapor exposure. Surf Coat Technol 263:61–65CrossRefGoogle Scholar
  100. 100.
    Alexander S, Israel W, Alexey K, Michael Z, Konstantin B (2018) Coating formation on Ti-6Al-4V Alloy by micro arc oxidation in molten salt. Materials 11:1611.  https://doi.org/10.3390/ma11091611 CrossRefGoogle Scholar
  101. 101.
    Dilek TA, Faiz MM, Menekse K, Ozge KA, Grzegorz C, Murat B, Nevin GK, Gamze TK, Aleksandra C, Huseyin C (2017) Optimisation of micro-arc oxidation electrolyte for fabrication of antibacterial coating on titanium. Mater Technol.  https://doi.org/10.1080/10667857.2017.1391931 CrossRefGoogle Scholar
  102. 102.
    Qi W, Mengqi C, Guo H, Xianlong Z (2015) Surface modification of porous titanium with microarc oxidation and its effects on osteogenesis activity in vitro. J Nanomater:Article ID 408634Google Scholar
  103. 103.
    Hui T, Wei T, Hong W, Yuanqiang S, Xian J, Liangjun Y, Xin W, Fabrizio S (2017) High-performance infrared emissivity of micro-arc oxidation coatings formed on titanium alloy for aerospace applications. J Appl Ceram Technol.  https://doi.org/10.1111/ijac.12861 CrossRefGoogle Scholar
  104. 104.
    Ma H, Li D, Liu C, Huang Z, He D, Yan Q, Liu P, Nash P, Shen D (2015) An investigation of (NaPO3)6 effects and mechanisms during micro-arc oxidation of AZ31 magnesium alloy. Surf Coat Technol 266:151–159CrossRefGoogle Scholar
  105. 105.
    Cheng Su, Wei D, Zhou Y (2012) The effect of oxidation time on the micro-arc titanium dioxide surface coating containing Si, Ca and Na. Procedia Eng 27:713–717CrossRefGoogle Scholar
  106. 106.
    Li H, Zhang J (2017) Preparation of a modified micro-arc oxidation coating using Al2O3 particles on Ti-6Al-4V. J Mater Sci Eng 6:6.  https://doi.org/10.4172/2169-0022.1000400 CrossRefGoogle Scholar
  107. 107.
    Raja HU, Khan A, Yerokhin AM (2008) Structural characteristics and residual stresses in oxide films produced on Ti by pulsed unipolar plasma electrolytic oxidation. Philos Mag Taylor Francis 88:795–807Google Scholar
  108. 108.
    Krzysztof R, Tadeusz H, Sofia G, Patrick C, Steinar R, Dalibor M, Łukasz D, Kornel P (2018) Novel porous phosphorus–calcium–magnesium coatings on titanium with copper or zinc obtained by DC plasma electrolytic oxidation: fabrication and characterization. Materials 11:1680CrossRefGoogle Scholar
  109. 109.
    Krzysztof R, Tadeusz H, Sofia G, Patrick C, Steinar R, Winfried M, Dalibor M, Kornel P (2018) Development of porous coatings enriched with magnesium and zinc obtained by DC plasma electrolytic oxidation. Micromachines 9:332CrossRefGoogle Scholar
  110. 110.
    Scales JT, Winter GD, Shirley HT (1959) Corrosion of orthopaedic implants. J Bone Jt Surg 41B:810–820CrossRefGoogle Scholar
  111. 111.
    Williams DF. Review (1987) Tissue-biomaterial interactions. J Mater Sci 22:3421–3445CrossRefGoogle Scholar
  112. 112.
    Tamilselvi S, Raman V, Rajendran N (2009) Corrosion behavior of titanium alloys in Hanks solution. Trans Mater Res Soc Japan 34:579–583CrossRefGoogle Scholar
  113. 113.
    Tamilselvi S, Rajendran N (2007) In vitro corrosion behaviour of Ti-5Al-2Nb-1Ta alloy in Hanks solution. Mater Corros 58:285–289CrossRefGoogle Scholar
  114. 114.
    Dearnley PA, Dahm KL, Cimenoðlu H (2004) The corrosion-wear behaviour of thermally oxidised CP-Ti and Ti–6Al–4V. Wear 256:469–479CrossRefGoogle Scholar
  115. 115.
    Preetha A, Banerjee R (2005) Comparison of artificial saliva substitutes. Trends Biomater Artif Organs 18:178–186Google Scholar
  116. 116.
    Joshua JJ, Gilbert JL, Urban RM (1998) Current concepts review corrosion of metal orthopaedic implants. J Bone Jt Surg 80:268–282CrossRefGoogle Scholar
  117. 117.
    Mohanty M, Baby S, Menon KVJ (2003) Spinal fixation device: a 6-year post implantation study. Biomater Appl 18:109–121CrossRefGoogle Scholar
  118. 118.
    Duerig T, Pelton A, Stöckel D (1999) An overview of nitinol medical applications. Mater Sci Eng A 273–275:149–160CrossRefGoogle Scholar
  119. 119.
    Helmus MN, Tweden K (1995) Materials selection. In: Wise DL, Trantolo DJ, Altobelli DE, Yaszemski MJ, Gresser JD, Schwartz ER (eds) Encyclopedic handbook of biomaterials and bioengineering, Part A: materials. Marcel Dekker, New YorkGoogle Scholar
  120. 120.
    Gawkrodger DJ (1993) Nickel sensitivity and the implantation of orthopaedic prostheses. Contact Dermat 28:257–259CrossRefGoogle Scholar
  121. 121.
    Hallab N, Jacobs JJ, Black J (2000) Hypersensitivity to metallic biomaterials: a review of leukocyte migration inhibition assays. Biomaterials 21:1301–1314CrossRefGoogle Scholar
  122. 122.
    Lawrence SK, Gertrude M. Shults (1925) Studies on the relationship of the chemical constituents of blood and cerebrospinal fluid. J Exp Med 42:565–591CrossRefGoogle Scholar
  123. 123.
    Peterson HA, Newman SR (1993) Adolescent bunion deformity treated with double osteotomy and longitudinal pin fixation of the first ray. J Pediatr Orthop 13:80–84CrossRefGoogle Scholar
  124. 124.
    Wisbey A, Gregsona PJ, Peter LM (1991) Effect of surface treatment on the dissolution of titanium-based implant materials. Biomaterials 12:470–473CrossRefGoogle Scholar
  125. 125.
    Atkinson JR, Jobbins B (1981) Properties of engineering materials for use in body. In: Dowson D, Wright V (eds) Introduction to biomechanics of joint and joint replacement. Mechanical Engineering Publications, London, pp 141–145Google Scholar
  126. 126.
    Chu PK, Chen JY, Wang LP, Huang N (2002) Plasma-surface modification of biomaterials. Mater Sci Eng Rep 36:143–206CrossRefGoogle Scholar
  127. 127.
    Okabe Y, Kurihara S, Yajima T, Seki Y, Nakamura I, Takano I (2005) Formation of super-hydrophilic surface of hydroxyapatite by ion implantation and plasma treatment. Surf Coat Technol 303:196–202Google Scholar
  128. 128.
    Jones DA (1992) Principles and prevention of corrosion. Macmillan Publishing Company, New York, pp 74–115Google Scholar
  129. 129.
    Dearnley PA (2005) A brief review of test methodologies for surface engineered biomedical implant alloys. Surf Coat Technol 98:483–490CrossRefGoogle Scholar
  130. 130.
    Pazzaglia UE, Beluffi G, Colombo A, Marchi A, Coci A, Ceciliani L (1986) Myositis ossificans in the newborn. A case report. J Bone Jt Surg Am 68:456–458CrossRefGoogle Scholar
  131. 131.
    Williams DF (2003) Biomaterials and tissue engineering in reconstructive surgery. Sadhana 28:563–574CrossRefGoogle Scholar
  132. 132.
    Urban RM, Jacobs JJ, Gilbert JL, Galante JO (1994) Migration of corrosion products from modular hip prostheses. Particlemicroanalysis and histopathological findings. J Bone Joint Surg Am 76:1345–1359CrossRefGoogle Scholar
  133. 133.
    Hall RM, Unsworth A (1997) Friction in hip prostheses. Biomaterials 18:1017–1026CrossRefGoogle Scholar
  134. 134.
    Karen Ng. Stress corrosion cracking in biomedical (metallic) implants Titanium-Nickel (TiNi) alloyInc.©; 2000–2004 [Cited 2004 Jan 29]. http://www.sjsu.edu/faculty/selvaduray/page/papers/mate115/ngkaren.pdf
  135. 135.
    Corrosion Source [homepage on the Internet]. Corrosion Doctors Inc.,© 2000 corrosionsource.com [Last Date Updated Dec 2005]. http://www.corrosionsource.com/technicallibrary/corrdoctors/Modules/Implants/Websites.html
  136. 136.
    Aksakal B, Yildirim ÖS, Gul H (2004) Metallurgical failure analysis of various implant materials used in orthopedic applications. J Fail Anal Prev 4:17–23CrossRefGoogle Scholar
  137. 137.
    Sivakumar M, Mudali KU, Rajeswari S (1994) Investigation of failures in stainless steel orthopaedic implant devices: fatigue failure due to improper fixation of a compression bone plate. J Mater Sci 13:142–145Google Scholar
  138. 138.
    Park JB, Lakes RS (1992) Hard tissue replacement II: joints and teeth. In: Park JB, Lakes RS (eds) Biomaterials: an introduction, 2nd edn. Plenum Press, New York, pp 317–354CrossRefGoogle Scholar
  139. 139.
    Okazaki Y (2002) Effect of friction on anodic polarization properties of metallic biomaterials. Biomaterials 23:2071–2077CrossRefGoogle Scholar
  140. 140.
    Manivasagam G, Mudali UK, Asokamani R, Raj B (2003) Corrosion and microstructural aspects of titanium and its alloys. Corros Rev 21:125–159CrossRefGoogle Scholar
  141. 141.
    Walker PR, LeBlanc J, Sikorska M (1989) Effects of aluminum and other cations on the structure of brain and liver chromatin. Biochemistry 28:3911–3915CrossRefGoogle Scholar
  142. 142.
    Okazaki Y, Gotoh E (2002) Implant applications of highly corrosion resistant Ti-15Zr-4Nb-4Ta alloy. Mater Trans 43:2943–2948CrossRefGoogle Scholar
  143. 143.
    Barril S, Debaud N, Mischler S, Landolt D (2002) A triboelectrochemical apparatus for in vitro investigation of fretting corrosion of metallic implant materials. Wear 252(9–10):744–754CrossRefGoogle Scholar
  144. 144.
    Jun K, Noriyuki H, Yosuke O (2007) The corrosion/wear mechanisms of Ti-6Al-4V alloy for different scratching rates. Wear 263:412–418CrossRefGoogle Scholar
  145. 145.
    Yu J, Zhao ZJ, Li LX (1993) Corrosion fatigue resistance of surgical implant stainless steels and titanium alloy. Corros Sci 35:587–589CrossRefGoogle Scholar
  146. 146.
    Long M, Rack HJ (1998) Titanium alloys in total joint replacement- a materials science perspective. Biomaterials 19:1621–1639CrossRefGoogle Scholar
  147. 147.
    Sumner DR, Galante JO (1992) Determinants of stress shielding: design versus materials versus interface. Clin Orthop Relat Res 274:202–212Google Scholar
  148. 148.
    Aragon PJ, Hulbert SE (1997) Corrosion of Ti-6A1-4V in simulated body fluids and bovine plasma. J Biomed Mater Res 26:155–164Google Scholar
  149. 149.
    Kobayashi E, Wang TJ, Doi H, Yoneyama T, Hamanaka H (1998) Mechanical properties and corrosion resistance of Ti-6Al-7Nb alloy dental castings. Mater Med 9:567–574CrossRefGoogle Scholar
  150. 150.
    Long ZY, Mitsuo N, Toshikazu A, Hisao F, Hiroyuki T (2005) Corrosion resistance and biocompatibility of Ti-Ta alloys for biomedical applications. Mater Sci Eng A 398:28–36CrossRefGoogle Scholar
  151. 151.
    Geetha M, Singh AK, Asokamani R, Gogia AK (2009) Ti based biomaterials, the ultimate choice for orthopaedic implants—a review. Prog Mater Sci 54:397–425CrossRefGoogle Scholar
  152. 152.
    Rondelli G (1996) Corrosion resistance tests on NiTi shape memory alloy. Biomaterials 17:2003–2008CrossRefGoogle Scholar
  153. 153.
    Hukovi MM, Radi N, Gruba Z, Tonejcv HA (2002) The corrosion behavior of sputter-deposited aluminum-tungsten alloys. Electrochim Acta 47:2387–2397CrossRefGoogle Scholar
  154. 154.
    Bonnel K, Pen CL, Pebere NEIS (1999) Characterization of protective coatings on aluminium alloys. Electrochim Acta 44:4256–4260CrossRefGoogle Scholar
  155. 155.
    Mirza-Rosca I, Gonzales S, Llorente ML, Popa MV, Vasilescu E, Drob P (1999) EIS characterization of a Ti-dental implant in artificial saliva media: dissolution process of the oxide barrier. Rev Roum Chem 44:217–221Google Scholar
  156. 156.
    Marino CEB, Mascaro LH (2004) EIS characterization of a Ti-dental implant in artificial saliva media: dissolution process of the oxide barrier. J Elect Anal Chem 568:115–120CrossRefGoogle Scholar
  157. 157.
    Staiger MP, Pietak AM, Huadmai J, Dias G (2006) Magnesium and its alloys as orthopedic biomaterials: a review. Biomaterials 27:1728–1736CrossRefGoogle Scholar
  158. 158.
    Narayanan R, Seshadri SK (2008) Point defect model and corrosion of anodic oxide coatings on Ti–6Al–4V. Corros Sci 50:1521–1529CrossRefGoogle Scholar
  159. 159.
    Luiz de Assis S, Wolynec S, Costa I (2006) Corrosion characterization of titanium alloys by electrochemical techniques. Electrochim Acta 51:1815–1819CrossRefGoogle Scholar
  160. 160.
    Khaled MM (2003) Potential dependent selective dissolution of Ti-6Al-4V and laser treated Ti-6Al-4V in acid-chloride media. J Appl Electrochem 33:817–822CrossRefGoogle Scholar
  161. 161.
    Baker MA, Assis SL, Higa OZ, Costa I (2009) Nanocomposite hydroxyapatite formation on a Ti–13Nb–13Zr alloy exposed in a MEM cell culture medium and the effect of H2O2 addition. Acta Biomater 5:63–75CrossRefGoogle Scholar
  162. 162.
    Sasikumar Y, Rajendran N (2013) Influence of surface modification on the apatite formation and corrosion behavior of Ti and Ti-15Mo alloy for biomedical applications. Mater Chem Phys 138:114–123CrossRefGoogle Scholar
  163. 163.
    Boddy PJ (1968) Oxygen evolution on semiconducting TiO2. J Electrochem Soc 115:199–203CrossRefGoogle Scholar
  164. 164.
    Sasikumar Y (2012) In vitro bioactivity and electrochemical characterization of surface modified titanium and its alloys for biomedical applications, Dissertation PhD, Anna University. http://shodhganga.inflibnet.ac.in/handle/10603/15049
  165. 165.
    Healy KE, Ducheyne P (1992) The mechanisms of passive dissolution of titanium in biological environments. J Biomed Mater Res 26:319–338CrossRefGoogle Scholar
  166. 166.
    Ghicov A, Tsuchiya H, Macak MJ, Schmuki P (2005) Titanium oxide nanotubes prepared in phosphate electrolytes. Electrochem Commun 7:505–509CrossRefGoogle Scholar
  167. 167.
    Sasikumar Y, Rajendran N (2012) Surface modification and in vitro characterization of Cp-Ti and Ti-5Al-2Nb-1Ta alloy in simulated body fluid. J Mater Eng Perform 21:2177–2187CrossRefGoogle Scholar
  168. 168.
    Krasicka-Cydzik E (2001) Impedance examination of titanium and its selected implant alloys. Biomater Eng 14:27–31Google Scholar
  169. 169.
    Singh R, Kurella A, Narendra B. Dahotre (2006) Laser surface modification of Ti–6Al–4V: Wear and corrosion characterization in simulated biofluid. Biomater Appl 21:49–73CrossRefGoogle Scholar
  170. 170.
    Schmidt H, Stechemesser G, Witte J, Soltani-Farshi M (1998) Depth distributions and anodic polarization behavior of ion implanted Ti-6Al-4V. Corros Sci 40:1533–1545CrossRefGoogle Scholar
  171. 171.
    Singh R, Martin M, Dahotre NB (2005) Influence of laser surface modification on corrosion behavior of stainless steel 316L and Ti-6Al-4V alloy in simulated body fluid. Surf Eng 21:297–306CrossRefGoogle Scholar
  172. 172.
    Metiko M, Hukovic S, Kwokal A, Piljac J (2003) The influence of niobium and vanadium on passivity of titanium-based implants in physiological solution. Biomaterials 24:3765–3775CrossRefGoogle Scholar
  173. 173.
    Kolman DG, Scully JR (1994) The passivity and electrochemistry of a Ti-15V-3Cr-3Al titanium alloy in ambient temperature aqueous sodium chloride solutions. J Electrochem Soc 141:2633–2641CrossRefGoogle Scholar
  174. 174.
    John HA, Hofmann S, Muknz WD (1987) Surface and interface characterization of heat-treated (Ti, Al, N) coatings on high speed steel substrates. Thin Solid Films 153:45–53CrossRefGoogle Scholar
  175. 175.
    Aysel Büyük N, Çiftçi Y, Ergün Y, Kayali (2011) The examination of corrosion behaviors of HAP coated Ti implant materials and 316L SS by sol–gel method. Prot Met Phys Chem Surf 47:670–679CrossRefGoogle Scholar
  176. 176.
    Songur M, Celikkan H, Gokmese F, Simsek SA, Altun NS (2009) Electrochemical corrosion properties of metal alloys used in orthopaedic implants. J Appl Electrochem 39:1259–1265CrossRefGoogle Scholar
  177. 177.
    Aksakal B, Gavgali M, Dikici B (2010) The effect of coating thickness on corrosion resistance of hydroxyapatite coated Ti-6Al-4V and 316L SS implants. J Mater Eng Perform 19:894–899CrossRefGoogle Scholar
  178. 178.
    Singh G, Singh H, Sidhu BS (2013) The effect of CaP concentration on corrosion behavior of plasma sprayed hydroxyapatite coating on titanium in simulated body fluid. J Biomim Biomater Tissue Eng 18:103.  https://doi.org/10.4172/1662-100X.1000103 CrossRefGoogle Scholar
  179. 179.
    Gonzalez JEG, Mirza-Rosca JC (1999) Study of the corrosion behavior of titanium and some of its alloys for biomedical and dental implant applications. J Electroanal Chem 471:109–115CrossRefGoogle Scholar
  180. 180.
    Wang CX, Wang M, Zhou X (2002) Electrochemical impedance spectroscopy study of the nucleation and growth of apatite on chemically treated titanium. Langmuir 18:7641–7647CrossRefGoogle Scholar
  181. 181.
    Wälivaara B, Askendal A, Krozer A, Lundström I, Tengvall P (1996) Blood protein interactions with chromium surfaces. J Biomater Sci Polym Ed 8:49–62CrossRefGoogle Scholar
  182. 182.
    Kokubo T, Miyaji F, Kim HM (1996) Spontaneous formation of bonelike apatite layer on chemically treated titanium metals. J Am Ceram Soc 79:1127–1129CrossRefGoogle Scholar
  183. 183.
    Shukla AK, Balasubramaniam R (2005) Effect of surface treatment on electrochemical behavior of CP Ti, Ti–6Al–4V and Ti–13Nb–13Zr alloys in simulated human body fluid. Corros Sci 48:1696–1720CrossRefGoogle Scholar
  184. 184.
    Silva TM, Rito JE, Simoes AMP, Ferreira MGS, Belo Cunha DAM, Watkins KG (1998) Electrochemical characterisation of oxide films formed on Ti-6Al-4V alloy implanted with Ir for bioengineering applications. Electrochim Acta 43:203–211CrossRefGoogle Scholar
  185. 185.
    Marinovic A, Metilos-Hukovic M, Baratac G, Gojo M (eds) II (2001) Croatian symposium on electrochemistry. In: Proceedings of the Croatian society of chemists and chemical engineers, Zagreb, vol. 2, p. 123Google Scholar
  186. 186.
    Aziz-Kerrzo M, Conroy KG, Fenelon AM, Farrell ST, Breslin CB (2001) Electrochemical studies on the stability and corrosion resistance of titanium-based implant materials. Biomaterials 22:1531–1539CrossRefGoogle Scholar
  187. 187.
    Leiao E, Barbosa MA, De Groot K (1998) In vitro testing of surface modified biomaterials. J Mater Sci Mater Med 9:543–548CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of ChemistryAnna UniversityChennaiIndia

Personalised recommendations