Advertisement

A Comprehensive Study on Crude Methanolic Extract of Daphne gnidium L. as Effective Corrosion Inhibitors of Mild Steel Induced by SRB Consortium

  • Djamila Djouahra-Fahem
  • Yassmina Angar
  • Lamine Mohamed Gana
  • Faiza Khoukhi
  • Salima Kebbouche-GanaEmail author
Article
  • 21 Downloads

Abstract

The aim of the present work is the evaluation of effect of methanolic extract obtained from Daphne gnidium against biocorrosion caused by sulphate-reducing bacteria (SRB). Herein, the study of the influence of SRB consortium has been realized on the biological and electrochemical properties of the carbon steel API5LX60 immersed in water sample obtained from an Algerian oil field separator. The monitoring of the treatment effects on the SRB performance using kits test and weight loss methods showed a positive effect of the methanolic extract of D. gnidium as a corrosion inhibitor at a concentration of 0.8 g/L. In the other hand, the weight loss test has generated an efficiency rate of 95.99% at a concentration of 1.6 g/L. A linear polarization resistance approved these results, and they have given a yield of 91.14% with a polarization resistance value of 28.9 kΩ cm2 at a concentration of 0.25 g/L.

Keywords

Daphne gnidium Biocorrosion SRB Weight loss tests Electrochemical tests Carbon steel 

References

  1. 1.
    Telegdi J, Shaban A, Trif L (2017) Microbiologically influenced corrosion (MIC). In: Trends in oil and gas corrosion research and technologies, pp 191–214.  https://doi.org/10.1016/b978-0-08-101105-8.00008-5
  2. 2.
    Rubio C, Ameil C, Poisson A, Duont I, Mariey L (2004) Characterization of reductive sulfato/thiosulfato flora by Fourier transform infrared spectroscopy (FTIR). Mater Technol 92(7–9):71–75.  https://doi.org/10.1051/mattech:2004040 CrossRefGoogle Scholar
  3. 3.
    Lin J, Ballim R (2012) Biocorrosion control: current strategies and promising alternatives. Afr J Biotechnol Acad J 91:15736–15747.  https://doi.org/10.5897/ajb12.2479 CrossRefGoogle Scholar
  4. 4.
    Gana ML, Kebbouche Gana S (2015) Role of the injection water microorganisms on corrosion of fiberglass in TFT Algerian oil fields. In: Third international conference on advances in bio-informatics, bio-technology and environmental engineering—ABBE. Institute of Research Engineers and Doctors.  https://doi.org/10.15224/978-1-63248-060-6-01
  5. 5.
    Kim BH, Lim SS, Daud WRW, Gadd GM, Chang IS (2015) The biocathode of microbial electrochemical systems and microbially-influenced corrosion. Bioresour Technol 190:395–401CrossRefGoogle Scholar
  6. 6.
    Guan J, Xia LP, Wang LY, Liu JF, Gu JD, Mu BZ (2013) Diversity and distribution of sulfate-reducing bacteria in four petroleum reservoirs detected by using 16S rRNA and dsrAB genes. Int Biodeterior Biodegrad 76:58–66CrossRefGoogle Scholar
  7. 7.
    Jai Dudeja P (2018) Efficient enhancement of corrosion resistance in steel by fiber lasers. Res Rev 03(3).  https://doi.org/10.13140/RG.2.2.18976.02562. http://www.rrjournals.com
  8. 8.
    Gana ML, Kebbouche-Gana S, Touzi A, Zorgani ML, Pauss A (2011) Antagonistic activity of Bacillus sp. obtained from an Algerian oilfield and chemical biocide THPS against sulfate-reducing bacteria consortium inducing corrosion in the oil industry. J Ind Microbiol Biotechnol 38:391–404CrossRefGoogle Scholar
  9. 9.
    Miranda E, Bethencourt M, Botana FJ, Cano MI, Sanchez-Amaya JM, Corzo A, Garcı´ de Lomas J, Fardeau ML, Ollivier B (2006) Biocorrosion of carbon steel alloys by an hydrogenotrophic sulfate-reducing bacterium Desulfovibrio capillatus isolated from a Mexican oil field separator. Corros Sci 48:2417–2431CrossRefGoogle Scholar
  10. 10.
    Eddy NO (2010) Adsorption and inhibitive properties of ethanol extract of Garcinia kola and Cola nitida for the corrosion of mild steel in H2SO4. Pigment Resin Technol 39(6):348–354.  https://doi.org/10.1108/03699421011085849 CrossRefGoogle Scholar
  11. 11.
    Ostovari A, Hoseinich SM, Shadizadeh SR, Hashemi SJ (2009) Corrosion inhibition of mild steel in 1 M HCl solution by henna extract: a comparative study of the inhibition by henna and its constituents (lawsone, gallic acid, α-d-glucose and tannic acid). Corros Sci 51:1935–1949CrossRefGoogle Scholar
  12. 12.
    Emran KM, Ali SM, Lehaibi HAA(2018) Green methods for corrosion control. In: Corrosion inhibitors, principles and recent applications. In Tech, London, pp 61–77.  https://doi.org/10.5772/intechopen.72762
  13. 13.
    Satapathy K, Gunasekaran G, Sahoo SC, Amit K, Rodrigues PV (2009) Corrosion inhibition by Justicia gendarussa plant extract in hydrochloric acid solution. Corros Sci 51:2848–2856CrossRefGoogle Scholar
  14. 14.
    Kalaiselvi P, Chellammal S, Palanichamy S, Subramanian G (2010) Artemisia pallens as corrosion inhibitor for mild steel in HCl medium. Mater Chem Phys 120(2–3):643–648.  https://doi.org/10.1016/j.matchemphys.2009.12.015 CrossRefGoogle Scholar
  15. 15.
    Ladhari A, Omezzine F, Rinez A, Haouala R (2011) Phytotoxicity of Daphne gnidium L. occurring in Tunisia. Int J Agric Biosyst Eng 5(11):697–700.  https://doi.org/10.5281/zenodo.1071524 CrossRefGoogle Scholar
  16. 16.
    Chaouki W, Leger DY, Liagre B, Cherrah Y, Beneytout JL, Hmamouchi M (2009) Roots of Daphne gnidium L. inhibit cell proliferation and induce apoptosis in the human breast cancer cell line MCF-7. Pharmazie 64(8):542Google Scholar
  17. 17.
    Chaabane F, Boubaker J, Loussaif A, Neffati A, Kilani-Jaziri S, Ghedira K, Chekir-Ghedira L (2012) Antioxidant, genotoxic and antigenotoxic activities of Daphne gnidium leaf extracts. Complement Altern Med 12:153CrossRefGoogle Scholar
  18. 18.
    Ziyyat A, Legssyer A, Mekhfi H, Dassouli A, Serhrouchni M, Benjelloun W (1997) Phytotherapy of hypertension and diabetes in oriental Morocco. J Ethnopharmacol 58(1):45–54.  https://doi.org/10.1016/s0378-8741(97)00077-9 CrossRefGoogle Scholar
  19. 19.
    Bruneton J (1987) Elements of phytochemistry and pharmacognosy. Techniques and documentation. Lavoisier, Paris. https://books.google.dz/books?id=Jks-AAAACAAJ&dq=El%C3%A9ments+de+phytochimie+et+de+pharmacognosie&hl=fr&sa=X&ved=0ahUKEwjQ5ZWq3d3eAhWTVsAKHSN3APQQ6AEIJzAA
  20. 20.
    Borris RP, Blasko PG, Cordell GA (1998) Ethnopharmacologic and phytochemical studies of the Thymelaeaceae. Ethnopharmacol J 24:41–49CrossRefGoogle Scholar
  21. 21.
    Bellakhdar J, Claisse R, Fleurentin J, Younos C (1991) Repertory of standard herbal drugs in the Moroccan pharmacopoeia. Ethnopharmacol J 35:123–143.  https://doi.org/10.1016/0378-8741(91)90064 CrossRefGoogle Scholar
  22. 22.
    Bruneton J (1999) Pharmacognosy, phytochemistry, medicinal plants. Lavoisier Technique & Documentation, Paris (in French) Google Scholar
  23. 23.
    Mourya P, Banerjee S, Singh MM (2014) Corrosion inhibition of mild steel in acidic solution by Tagetes erecta (Marigold flower) extract as a green inhibitor. Corros Sci 85:352–363CrossRefGoogle Scholar
  24. 24.
    Garai S, Garai S, Jaisankar P, Singh JK, Elango A (2012) A comprehensive study on crude methanolic extract of Artemisia pallens (Asteraceae) and its active component as effective corrosion inhibitors of mild steel in acid solution. Corros Sci 60:193–204CrossRefGoogle Scholar
  25. 25.
    Falleh H, Ksouri R, Chaieb K, Karray-Bouraoui N, Trabelsi N, Boulaaba M, Abdelly C (2008) Phenolic composition of Cynara cardunculus L. organs, and their biological activities. C R Biologies 331:372–379CrossRefGoogle Scholar
  26. 26.
    Grigonis D, Venskutonis PR, Sivik B, Sandahl M, Eskilsson CS (2005) Comparison of different extraction techniques for isolation of antioxidants from sweet grass (Hierochloë odorata). J Supercrit Fluids 33(3):223–233.  https://doi.org/10.1016/j.supflu.2004.08.006 CrossRefGoogle Scholar
  27. 27.
    Suman T, Prabhu PS, Om Prakash C, Bhuvnesh K (2015) Antioxidant potential of selected medicinal plants of trans-Himalayan region. Int J Sci Res (IJSR) 5(5):1123–1128.  https://doi.org/10.21275/v5i5.nov163576 CrossRefGoogle Scholar
  28. 28.
    Apha, American Public Health Association (APHA) (1975) Identification of iron and sulfur bacteria” Standard methods for the examination of water and waste water, 14th ed., New YorkGoogle Scholar
  29. 29.
    Postgate JR (1984) The sulfate-reducing bacteria. Cambridge University Press, Cambridge.  https://doi.org/10.1002/jobm.3620250205 CrossRefGoogle Scholar
  30. 30.
    Kushkevych I (2016) Dissimilatory sulfate reduction in the intestinal sulfate-reducing bacteria. Stud Biol 10:197–228.  https://doi.org/10.30970/sbi.1001.560 CrossRefGoogle Scholar
  31. 31.
    Haras D (2005) Biofilm and alteration of materials: from analysis of the phenomenon to prevention strategies. Mater Technol 93:27–41.  https://doi.org/10.1051/mattech:2006003 CrossRefGoogle Scholar
  32. 32.
    Hubert C, Nemati M, Jenneman G, Voordouw G (2005) Corrosion risk associated with microbial souring control using nitrate or nitrite. Appl Microbiol Biotechnol 68(2):272–282CrossRefGoogle Scholar
  33. 33.
    Rajendran A, Karthikeyan C (2012) The inhibitive effect of extract of flowers of Cassia auriculata in 2 M HCl on the corrosion of aluminium and mild steel. Int J Plant Res 2(1):9–14.  https://doi.org/10.5923/j.plant.20120201.02 CrossRefGoogle Scholar
  34. 34.
    Sumita A, Nikhila G (2018) Adsorption and thermodynamic study of corrosion inhibition properties of Mimosa pudica on mild steel in 2 M H2SO4 international. J ChemTech Res 11(3):129–139.  https://doi.org/10.20902/ijctr.2018.110341 CrossRefGoogle Scholar
  35. 35.
    Enning D, Garrelfs J (2014) Corrosion of iron by sulfate-reducing bacteria: new views of an old problem. Appl Environ Microbiol 80(4):1226–1236CrossRefGoogle Scholar
  36. 36.
    Kebbouche-Gana S, Gana ML (2012) Biocorrosion of carbon steel by a nitrate-utilizing consortium of sulfate-reducing bacteria obtained from an Algerian oil field. Ann Microbiol 62(1):203–210CrossRefGoogle Scholar
  37. 37.
    Leclerc H, Gaillard J-L, Simonet M (1995) Microbiologie générale: La bactérie et le monde bactérieu. Doin editeurs, ParisGoogle Scholar
  38. 38.
    Queiroz GA, Andrade JS, Malta TBS, Vinhas G, Lima MAGDA (2018) Biofilm formation and corrosion on carbon steel API 5LX60 in clayey soil. Mater Res 21(3):1–7.  https://doi.org/10.1590/1980-5373-mr-2017-0338 CrossRefGoogle Scholar
  39. 39.
    Dihn HT, Kuever J, Mubmann M, Hassel AW, Stratmann M, Widdel F (2004) Iron corrosion by novel anaerobic microorganisms. Nature 427:829–832CrossRefGoogle Scholar
  40. 40.
    Javaherdashti R (2011) Impact of sulphate-reducing bacteria on the performance of engineering materials. Appl Microbiol Biotechnol 91:1507–1517CrossRefGoogle Scholar
  41. 41.
    Girault HH (2007) Analytical and physical electrochemistry. EPFL-Press, LausanneGoogle Scholar
  42. 42.
    Lin Y, Jizhou D, Xiangqian D, Yanliang H, Baorong H (2013) Accelerated anaerobic corrosion of electroactive sulfate-reducing bacteria by electrochemical impedance spectroscopy and chronoamperometry. Electrochem Commun 26:101–104CrossRefGoogle Scholar
  43. 43.
    Bhola SM, Alabbas FM, Bhola R, Spear JR, Mishra B, Olson DL, Kakpovbia AE (2014) Neem extract as an inhibitor for biocorrosion influenced by sulfate reducing bacteria: a preliminary investigation. Eng Fail Anal 36:92–103CrossRefGoogle Scholar
  44. 44.
    Aguirre J, Daillec L, Fischera DA, Galarcea C, Pizarro G, Vargas I, Walczak M, de la Iglesia R, Armijo F (2017) Study of poly(3,4-ethylendioxythiphene) as a coating for mitigation of biocorrosion of AISI 304 stainless steel in natural seawater. Prog Org Coat 113:175–184CrossRefGoogle Scholar
  45. 45.
    Delaunois F, Tosar F, Vitry V (2014) Corrosion behaviour and biocorrosion of galvanized steel water distribution systems. Bioelectrochemistry 97:110–119CrossRefGoogle Scholar
  46. 46.
    Nwanonenyi SC, Obasi HC, Chidiebere AM (2018) Inhibitive performance of carboxymethyl cellulose and additives on corrosion of carbon steel in acidic et alkaline environments. J Bio Tribo Corros 4:34.  https://doi.org/10.1007/s40735-018-0148-x CrossRefGoogle Scholar
  47. 47.
    Abdoli L, Huang J, Li H (2016) Electrochemical corrosion behaviors of aluminum-based marine coatings in the presence of Escherichia coli bacterial biofilm. Mater Chem Phys 173:62–69CrossRefGoogle Scholar
  48. 48.
    Parthipan P, Elumalai P, Ting PY, Rahman PKSM, Rajasekar A (2018) Characterization of hydrocarbon degrading bacteria isolated from Indian crude oil reservoir and their influence on biocorrosion of carbon steel API 5LX. Int Biodeterior Biodegrad 129:67–80CrossRefGoogle Scholar
  49. 49.
    Dean JA (1973) Lange’s handbook of chemistry. McGraw-Hill, New York. http://depa.fquim.unam.mx/amyd/archivero/ManualdeLange_9164.pdf
  50. 50.
    El Bribri A, Tabyaoui M, Tabyaoui B, ElAttari H, Bentiss F (2013) The use of Euphorbia falcate as eco-friendly corrosion inhibitor of carbon steel in hydrochloric acid solution. Mater Chem Phys 141:240CrossRefGoogle Scholar
  51. 51.
    Zarrok H, Zarrouk A, Salghi R, Oudda H, Hammouti B, Ebn Touhami M et al (2012) A combined experimental and theoretical study on the corrosion inhibition and adsorption behaviour of quinoxaline derivative during carbon steel corrosion in hydrochloric acid. Port Electrochim Acta 30(6):405–417.  https://doi.org/10.4152/pea.201206405 CrossRefGoogle Scholar
  52. 52.
    Chandrashekar A, Ajaykumar BS, Reddappa HN (2018) Mechanical, structural and corrosion behavior of AlMg4.5/nanoAl2O3 metal matrix composites. Mater Today Proc 5(1):2811–2817.  https://doi.org/10.1016/j.matpr.2018.01.069 CrossRefGoogle Scholar
  53. 53.
    Aribo S, Olusegun SJ, Ibhadiyi LJ, Oyetunji A, Folorunso DO (2016) Green inhibitors for corrosion protection in acidizing oilfield environment. J Assoc Arab Univ Basic Appl Sci 24(1):34–38.  https://doi.org/10.1016/j.jaubas.2016.08.001 CrossRefGoogle Scholar
  54. 54.
    Deiana M, Rosa A, Casu V, Cottiglia F, Bonsignore L, Dessì MA (2003) Chemical composition and antioxidant activity of extracts from Daphne gnidium L. J Am Oil Chem Soc 80(1):65–70.  https://doi.org/10.1007/s11746-003-0652-x CrossRefGoogle Scholar
  55. 55.
    Agi A, Junin R, Rasol M, Gbadamosi A, Gunaji R (2018) Treated Rhizophora mucronata tannin as a corrosion inhibitor in chloride solution. PLoS One. 13(8):e0200595.  https://doi.org/10.1371/journal.pone.0200595 (Kumar V (ed), Public Library of Science (PLoS)) CrossRefGoogle Scholar
  56. 56.
    Xhanari K, Finšgarv M, Hrnčič MK, Maver U, Knez Ž, Seiti B (2017) Green corrosion inhibitors for aluminum and its alloys: a review. RSC Adv 7(44):27299–27330CrossRefGoogle Scholar
  57. 57.
    Bammou L, Chebli B, Salghi R, Bazzi L, Hammouti B, Mihit M, El Idrissi H (2010) Thermodynamic properties of Thymus satureioides essential oils as corrosion inhibitor of tinplate in 0.5 M HCl: chemical characterization and electrochemical study. Green Chem Lett Rev 3:173–178CrossRefGoogle Scholar
  58. 58.
    Bammou L, Belkhaouda M, Salghi R, Benali O, Zarrouk A, Zarrok H, Hammouti B (2014) Corrosion inhibition of steel in sulfuric acidic solution by the Chenopodium ambrosioides extracts. J Assoc Arab Univ Basic Appl Sci 16:83–90Google Scholar
  59. 59.
    Hussin MH, Kassim MJ (2011) The corrosion inhibition and adsorption behavior of Uncaria gambir extract on mild steel in 1 M HCl. Mater Chem Phys 125(3):461–468.  https://doi.org/10.1016/j.matchemphys.2010.10.032 CrossRefGoogle Scholar
  60. 60.
    Nasibi M, Mohammady M, Ghasemi E, Ashrafi A, Zaarei D (2013) Corrosion inhibition of mild steel by nettle (Urtica dioica L.) extract: polarization, EIS, AFM, SEM and EDS studies. J Adhes Sci Technol 27(17):873–1885CrossRefGoogle Scholar
  61. 61.
    Ogwo K, Osuwa J, Udoinyang I, Nnanna L (2017) Corrosion inhibition of mild steel et aluminium in 1 M hydrochloric acid by leaves extracts of Ficus sycomorus. Phys Sci Int J 14(3):1–10.  https://doi.org/10.9734/psij/2017/32708 CrossRefGoogle Scholar
  62. 62.
    Saviour A, Umoren Moses M, Solomon (2016) Synergistic corrosion inhibition effect of metal cations and mixtures of organic compounds: a review. J Environ Chem Eng 5:246–273.  https://doi.org/10.1016/j.jece.2016.12.001 CrossRefGoogle Scholar
  63. 63.
    Rajendran S, John Amalraj A, Jasmine Joice M, Anthony N, Trivedi DC, Sundaravadivelu M (2004) Corrosion inhibition by the caffeine–Zn2+ system. Corros Rev 22(3):233–248CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Djamila Djouahra-Fahem
    • 1
    • 2
  • Yassmina Angar
    • 3
  • Lamine Mohamed Gana
    • 4
  • Faiza Khoukhi
    • 4
  • Salima Kebbouche-Gana
    • 1
    Email author
  1. 1.Laboratoire Conservation et Valorisation des Resources Biologiques (VALCOR)Université M’Hamed Bougara de BoumerdesBoumerdesAlgeria
  2. 2.Faculty of Nature, Life and Earth SciencesUniversity of BouiraBouiraAlgeria
  3. 3.Laboratory of Treatment and Forming of PolymersUniversity of M’Hamed BougaraBoumerdesAlgeria
  4. 4.Division, Technology and Development Center of SONATRACHBoumerdesAlgeria

Personalised recommendations