Skip to main content

Advertisement

Log in

Investigation of the Corrosive Effects of Dental Cements on Titanium

  • Published:
Journal of Bio- and Tribo-Corrosion Aims and scope Submit manuscript

Abstract

Biocompatibility, strength, and corrosion resistance make titanium the material of choice for dental implants and abutment components. In cemented implant restorations, dental cement is used to provide retention of the crown to the abutment and to create access to the implant. Reported problems in the literature associated with dental cement cite inflammation, and in some cases peri-implantitis, due to its residual presence in subgingival tissues. It has been recently suggested that particular components of dental cement may play a role in promoting corrosion while in contact with titanium surfaces. The goal of this study was to understand the electrochemical behavior of commercially pure titanium (cpTi) in contact with various commercially available dental cements. Open-circuit potential, linear polarization resistance, and corrosion rates were measured for cpTi disks cemented with resin, eugenol, zinc phosphate, and bioceramic cements. Results determined that the bioceramic cement investigated induced significantly lower polarization resistance values and a higher corrosion rate relative to noncemented cpTi. Resin, eugenol, and zinc phosphate cements exhibited corrosion behavior between that of control and bioceramic-cemented cpTi. Overall, fluoride-containing cements were observed to increase the corrosion rate of cpTi.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Council ADA, Scientific ON, Properties C (2003) Titanium applications in dentistry. J Am Dent Assoc 134(March):347–349. doi:10.14219/jada.archive.2003.0165

    Google Scholar 

  2. De Avila ED, De Molon RS, Vergani CE, De Assis Mollo F, Salih V (2014) The relationship between biofilm and physical–chemical properties of implant abutment materials for successful dental implants. Materials (Basel) 7(5):3651–3662. doi:10.3390/ma7053651

    Article  Google Scholar 

  3. Demirel F, Saygili G, Sahmali S (2003) Corrosion susceptibility of titanium covered by dental cements. J Oral Rehabil 30(12):1162–1167. doi:10.1016/S0109-5641(99)00087-1

    Article  Google Scholar 

  4. Andersson B, Odman P, Lindvall AM, Lithner B (1995) Single-tooth restorations supported by osseointegrated implants: results and experiences from a prospective study after 2 to 3 years. Int J Oral Maxillofac Implants 10(6):702–711

    Google Scholar 

  5. Bhola R, Bhola SM, Mishra B, Olson DL (2011) Corrosion in titanium dental implants/prostheses—a review. Trends Biomater Artif Org 25(1):34–46

    Google Scholar 

  6. Rodrigues DC, Valderrama P, Wilson TG et al (2013) Titanium corrosion mechanisms in the oral environment: a retrieval study. Materials (Basel) 6(11):5258–5274. doi:10.3390/ma6115258

    Article  Google Scholar 

  7. Rodrigues DC, Sridhar S, Gindri IM et al (2016) Spectroscopic and microscopic investigation of the effects of bacteria on dental implant surfaces. RSC Adv 6(54):48283–48293. doi:10.1039/C6RA07760A

    Article  Google Scholar 

  8. Sridhar S, Abidi Z, Wilson TG et al (2016) In vitro evaluation of the effects of multiple oral factors on dental implants surfaces. J Oral Implantol 42(3):248–257. doi:10.1563/aaid-joi-D-15-00165

    Article  Google Scholar 

  9. Eliades T (1997) Passive film growth on titanium alloys: physicochemical and biologic considerations. Int J Oral Maxillofac Implants 12(5):621–627

    Google Scholar 

  10. Koike M, Cai Z, Fujii H, Brezner M, Okabe T (2003) Corrosion behavior of cast titanium with reduced surface reaction layer made by a face-coating method. Biomaterials 24(25):4541–4549. doi:10.1016/S0142-9612(03)00063-2

    Article  Google Scholar 

  11. McEwen DR, Sanchez MM, Goode PM (1995) Dental restorations using titanium osseointegrated dental implants. AORN J. doi:10.1016/S0001-2092(06)63651-X

    Google Scholar 

  12. Turpin YL, Tardivel RD, Tallec A, Le Menn AC (2000) Corrosion susceptibility of titanium covered by dental cements. Dent Mater 16:57–61. doi:10.1016/S0109-5641(99)00087-1

    Article  Google Scholar 

  13. Reclaru L, Meyer JM (1998) Effects of fluorides on titanium and other dental alloys in dentistry. Biomaterials 19(1–3):85–92. doi:10.1016/S0142-9612(97)00179-8

    Article  Google Scholar 

  14. Johansson BI, Bergman B (1995) Corrosion of titanium and amalgam couples: effect of fluoride, area size, surface preparation and fabrication procedures. Dent Mater 11(1):41–46. doi:10.1016/0109-5641(95)80007-7

    Article  Google Scholar 

  15. Sharma M, Kumar AVR, Singh N, Adya N, Saluja B (2008) Electrochemical corrosion behavior of dental/implant alloys in artificial saliva. J Mater Eng Perform 17(5):695–701. doi:10.1007/s11665-008-9198-4

    Article  Google Scholar 

  16. Elagli K, Traisnel M, Hildebrand HF (1993) Electrochemical behaviour of titanium and dental alloys in artificial saliva. Electrochim Acta 38(13):1769–1774. doi:10.1016/0013-4686(93)85075-A

    Article  Google Scholar 

  17. Elter C, Heuer W, Demling A et al (2008) Supra- and subgingival biofilm formation on implant abutments with different surface characteristics. Int J Oral Maxillofac Implants 23(2):327–334

    Google Scholar 

  18. Cai Z, Shafer T, Watanabe I, Nunn ME, Okabe T (2003) Electrochemical characterization of cast titanium alloys. Biomaterials 24(2):213–218. doi:10.1016/S0142-9612(02)00293-4

    Article  Google Scholar 

  19. Sivakumar B, Singh R, Pathak LC (2015) Corrosion behavior of titanium boride composite coating fabricated on commercially pure titanium in Ringer’s solution for bioimplant applications. Mater Sci Eng C 48:243–255. doi:10.1016/j.msec.2014.12.002

    Article  Google Scholar 

  20. Mariano NA, Oliveira RG, Fernandes MA, Rigo ECS (2009) Corrosion behavior of pure titanium in artificial saliva solution. Rev Mater 14(2):878–880

    Google Scholar 

  21. Wilson TG Jr. (2009) The positive relationship between excess cement and peri-implant disease: a prospective clinical endoscopic study. J Periodontol 80(9):1388–1392. doi:10.1902/jop.2009.090115

    Article  Google Scholar 

  22. Pauletto N, Lahiffe BJ, Walton JN (1999) Complications associated with excess cement around crowns on osseointegrated implants: a clinical report. Int J Oral Maxillofac Implants 14(6):865–868

    Google Scholar 

  23. Wadhwani CPK, Raval NC, Ramer N (2015) Peri-implant disease and cemented implant restorations: a multifactorial etiology. In: Wadhwani PKC (ed) Cementation in dental implantology: an evidence-based guide. Springer, Berlin, pp 29–45. doi:10.1007/978-3-642-55163-5_3

    Google Scholar 

  24. Kuphasuk C, Oshida Y, Andres CJ, Hovijitra ST, Barco MT, Brown DT (2001) Electrochemical corrosion of titanium and titanium-based alloys. J Prosthet Dent 85(2):195–202. doi:10.1067/mpr.2001.113029

    Article  Google Scholar 

  25. Powers JM, Wataha JC (2016) Finishing, polishing, and cleansing materials. In: Dental materials: foundations and applications, 11th edn. Elsevier, St. Louis, Missouri

  26. Boere G (1995) Influence of fluoride on titanium in an acidic environment measured by polarization resistance technique. J Appl Biomater 6(4):283–288. doi:10.1002/jab.770060409

    Article  Google Scholar 

  27. Rodrigues DC, Urban RM, Jacobs JJ, Gilbert JL (2009) In vivo severe corrosion and hydrogen embrittlement of retrieved modular body titanium alloy hip-implants. J Biomed Mater Res Part B Appl Biomater 88(1):206–219. doi:10.1002/jbm.b.31171

    Article  Google Scholar 

  28. Siddiqi A, Payne AGT, De Silva RK, Duncan WJ (2011) Titanium allergy: could it affect dental implant integration? Clin Oral Implants Res 22(7):673–680. doi:10.1111/j.1600-0501.2010.02081.x

    Article  Google Scholar 

  29. Rodriguez LC, Saba JN, Chung K, Wadhwani CPK, Rodrigues DC (2016) In vitro effects of dental cements on hard and soft tissues associated with dental implants. J Prosthet Dent. doi:10.1016/j.prosdent.2016.10.002

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank Doxa Dental for the collaboration and generous donation of materials for this investigation. Special thanks to Dr. Chandur Wadhwani (Northwest Prosthodontics, Bellevue, WA) for the clinician expertise, cement donations, and substantial academic support throughout the projects inside the BONE Lab (UT Dallas).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Danieli C. Rodrigues.

Ethics declarations

Conflict of interest

The authors and University of Texas at Dallas pose no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 217 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saba, J.N., Siddiqui, D.A., Rodriguez, L.C. et al. Investigation of the Corrosive Effects of Dental Cements on Titanium. J Bio Tribo Corros 3, 25 (2017). https://doi.org/10.1007/s40735-017-0083-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40735-017-0083-2

Keywords

Navigation