Will Landscape Fire Increase in the Future? A Systems Approach to Climate, Fire, Fuel, and Human Drivers
- 3 Downloads
Abstract
The extent of the Earth’s surface burned annually by fires is affected by a number of drivers, including but not limited to climate. Other important drivers include the amount and type of vegetation (fuel) available and human impacts, including fire suppression, ignition, and conversion of burnable land to crops. Prior to the evolution of hominids, area burned was dictated by climate via direct influences on vegetation, aridity, and lightning. In the future, warming will be accompanied by changes in distribution, frequency, intensity, and timing of precipitation that may promote or suppress fire activity depending on location. Where area burned increases, fire may become self-regulating by reducing fuel availability. The effects of climate change on fire regimes will be strongly modulated by humans in many areas. Here, we use a systems approach to outline major drivers of changes in area burned. Due to the array of interacting drivers working in concert with climate’s influence on burned area, and uncertainty in the direction and magnitude of changes in these drivers, there is very high uncertainty for much of the globe regarding how fire activity and accompanying smoke emissions will change in the coming decades.
Keywords
Area burned Climate change Fire activity Emissions Systems approachNotes
Compliance with Ethical Standards
Conflict of Interest
On behalf of all authors, the corresponding author states that there is no conflict of interest.
Human and Animal Rights and Informed Consent
This article does not contain any studies with human or animal subjects performed by any of the authors.
References
- 1.Bowman DMJS, Balch JK, Artaxo P, Bond WJ, Carlson JM, Cochrane MA, et al. Fire in the earth system. Science. 2009;324:481–4.CrossRefGoogle Scholar
- 2.Pyne SJ. World fire: the culture of fire on earth. Seattle: University of Washington Press; 1995.Google Scholar
- 3.Brown PM, Kaufmann MR, Shepperd WD. Long-term, landscape patterns of past fire events in a montane ponderosa pine forest of central Colorado. Landsc Ecol. 1999;14:513–32.CrossRefGoogle Scholar
- 4.Brooks ML, D’Antonio CM, Richardson DM, Grace JB, Keeley JE, DiTomaso JM, et al. Effects of invasive alien plants on fire regimes. Bioscience. 2004;54:677–88.CrossRefGoogle Scholar
- 5.Brooks ML, Matchett JR. Spatial and temporal patterns of wildfires in the Mojave Desert, 1980–2004. J Arid Environ. 2006;67:148–64.CrossRefGoogle Scholar
- 6.Morgan P, Hardy CC, Swetnam TW, Rollins MG, Long DG. Mapping fire regimes across time and space: understanding coarse and fine-scale fire patterns. Int J Wildl Fire. 2001;10:329–42.CrossRefGoogle Scholar
- 7.Jolly WM, Cochrane MA, Freeborn PH, Holden ZA, Brown TJ, Williamson GJ, et al. Climate-induced variations in global wildfire danger from 1979 to 2013. Nat Commun. 2015;6:7537.CrossRefGoogle Scholar
- 8.Williams J. Exploring the onset of high-impact mega-fires through a forest land management prism. For Ecol Manage. 2013;294:4–10. https://doi.org/10.1016/j.foreco.2012.06.030.CrossRefGoogle Scholar
- 9.Calkin DE, Thompson MP, Finney MA. Negative consequences of positive feedbacks in US wildfire management. For Ecosyst. 2015;2:9.CrossRefGoogle Scholar
- 10.Doerr SH, Santín C. Global trends in wildfire and its impacts: perceptions versus realities in a changing world. Philos Trans R Soc B. 2016;371:20150345. https://doi.org/10.1098/rstb.2015.0345.CrossRefGoogle Scholar
- 11.Andela N, Morton DC, Giglio L, Chen Y, Van Der Werf GR, Kasibhatla PS, et al. A human-driven decline in global burned area. Science. 2017;356:1356–62.CrossRefGoogle Scholar
- 12.Giglio L, Randerson JT, Van Der Werf GR. Analysis of daily, monthly, and annual burned area using the fourth-generation global fire emissions database (GFED4). J Geophys Res Biogeosci. 2013;118:317–28.CrossRefGoogle Scholar
- 13.Theobald DM, Romme WH. Expansion of the US wildland-urban interface. Landsc Urban Plan. 2007;83:340–54.CrossRefGoogle Scholar
- 14.Williams AP, Abatzoglou JT. Recent advances and remaining uncertainties in resolving past and future climate effects on global fire activity. Curr Clim Chang Rep. 2016;2:1–14.CrossRefGoogle Scholar
- 15.Liu J, Dietz T, Carpenter SR, Folke C, Alberti M, Redman CL, et al. Coupled human and natural systems. Ambio. 2009;36:639–49.CrossRefGoogle Scholar
- 16.Liu J, Mooney H, Hull V, Davis SJ, Gaskell J, Hertel T, et al. Systems integration for global sustainability. Science (80-). 2015;347:963.Google Scholar
- 17.Spies TA, White EM, Kline JD, Paige Fischer A, Ager A, Bailey J, et al. Examining fire-prone forest landscapes as coupled human and natural systems. Ecol Soc. 2014;19:9.CrossRefGoogle Scholar
- 18.Shindler B, Spies TA, Bolte JP, Kline JD. Integrating ecological and social knowledge: learning from CHANS research. Ecol Soc. 2017;22.Google Scholar
- 19.Thompson MP, Dunn CJ, Calkin DE. Systems thinking and wildland fire management. Proc 60th Annu Meet Int Soc Syst Sci. 2017;1(1):17.Google Scholar
- 20.Thompson MP, MacGregor DG, Dunn CJ, Calkin DE, Phipps J. Rethinking the wildland fire management system. J For. 2018;116:382–90.Google Scholar
- 21.Pausas JG, Keeley JE. A burning story: the role of fire in the history of life. Bioscience. 2009;59:593–601. https://doi.org/10.1525/bio.2009.59.7.10.CrossRefGoogle Scholar
- 22.Scott AC, Glasspool IJ. The diversification of Paleozoic fire systems and fluctuations in atmospheric oxygen concentration. Proc Natl Acad Sci. 2006;103:10861–5. https://doi.org/10.1073/pnas.0604090103.CrossRefGoogle Scholar
- 23.Glasspool IJ, Scott AC, Waltham D, Pronina N, Shao L. The impact of fire on the Late Paleozoic Earth system. Front Plant Sci. 2015;6:1–13. https://doi.org/10.3389/fpls.2015.00756/abstract.CrossRefGoogle Scholar
- 24.Fischer H, Schüpbach S, Gfeller G, Bigler M, Röthlisberger R, Erhardt T, et al. Millennial changes in North American wildfire and soil activity over the last glacial cycle. Nat Geosci. 2015;8:723–7.CrossRefGoogle Scholar
- 25.Power MJ, Marlon J, Ortiz N, Bartlein PJ, Harrison SP, Mayle FE, et al. Changes in fire regimes since the last glacial maximum: an assessment based on a global synthesis and analysis of charcoal data. Clim Dyn. 2008;30:887–907.CrossRefGoogle Scholar
- 26.Keeley JE, Rundel PW. Fire and the Miocene expansion of C4 grasslands. Ecol Lett. 2005;8:683–90.CrossRefGoogle Scholar
- 27.Schwilk DW, Ackerly DD. Flammability and serotiny as strategies : correlated evolution in pines. Oikos. 2001;94:326–36.CrossRefGoogle Scholar
- 28.Parks SA, Miller C, Holsinger LM, Baggett LS, Bird BJ. Wildland fire limits subsequent fire occurrence. Int J Wildl Fire. 2016;25:182–90.CrossRefGoogle Scholar
- 29.Parks SA, Holsinger LM, Miller C, Nelson CR. Wildland fire as a self-regulating mechanism: the role of previous burns and weather in limiting fire progression. Ecol Appl. 2015;25:1478–92.CrossRefGoogle Scholar
- 30.Riley KL, Thompson MP, Scott JH, Gilbertson-Day JW. A model-based framework to evaluate alternative wildfire suppression strategies. Resources. 2018;7. Available from: http://www.mdpi.com/2079-9276/7/1/4.
- 31.Kurtz AC, Kump LR, Arthur MA, Zachos JC, Paytan A. Early Cenozoic decoupling of the global carbon and sulfur cycles. Paleoceanography. 2003;18:1090.CrossRefGoogle Scholar
- 32.Marlon JR, Bartlein PJ, Daniau AL, Harrison SP, Maezumi SY, Power MJ, et al. Global biomass burning: a synthesis and review of Holocene paleofire records and their controls. Quat Sci Rev. Elsevier Ltd. 2013;65:5–25. https://doi.org/10.1016/j.quascirev.2012.11.029.CrossRefGoogle Scholar
- 33.Zennaro P, Kehrwald N, Marlon J, Ruddiman WF, Brucher T, Agostinelli C, et al. Europe on fire three thousand years ago: arson or climate ? Geophys Res Lett. 2015;42:5023–33.CrossRefGoogle Scholar
- 34.Marlon JR, Bartlein PJ, Carcaillet C, Gavin DG, Harrison SP, Higuera PE, et al. Climate and human influences on global biomass burning over the past two millennia. Nat Geosci. 2008;1:697–702.CrossRefGoogle Scholar
- 35.Kelly R, Chipman ML, Higuera PE, Stefanova I, Brubaker LB, Hu FS. Recent burning of boreal forests exceeds fire regime limits of the past 10,000 years. Proc Natl Acad Sci. 2013;110:13055–60. https://doi.org/10.1073/pnas.1305069110.CrossRefGoogle Scholar
- 36.Barrett CM, Kelly R, Higuera PE, Hu FS. Climatic and land cover influences on the spatiotemporal dynamics of Holocene boreal fire regimes. Ecology. 2013;94:389–402.CrossRefGoogle Scholar
- 37.Walsh MK, Marlon JR, Goring SJ, Brown KJ, Gavin DG. A regional perspective on Holocene fire–climate–human interactions in the Pacific northwest of North America. Ann Assoc Am Geogr. 2015;105:1135–57.CrossRefGoogle Scholar
- 38.Calder WJ, Parker D, Stopka CJ, Jiménez-Moreno G, Shuman BN. Medieval warming initiated exceptionally large wildfire outbreaks in the Rocky Mountains. Proc Natl Acad Sci. 2015;112:13261–6. https://doi.org/10.1073/pnas.1500796112.CrossRefGoogle Scholar
- 39.Power MJ, Mayle FE, Bartlein PJ, Marlon JR, Anderson RS, Behling H, et al. Climatic control of the biomass-burning decline in the Americas after AD 1500. The Holocene. 2013;23:3–13.CrossRefGoogle Scholar
- 40.Taylor AH, Trouet V, Skinner CN, Stephens S. Socioecological transitions trigger fire regime shifts and modulate fire–climate interactions in the Sierra Nevada, USA, 1600–2015 CE. Proc Natl Acad Sci. 2016;113:13684–9.CrossRefGoogle Scholar
- 41.Randerson JT, Chen Y, Van Der Werf GR, Rogers BM, Morton DC. Global burned area and biomass burning emissions from small fires. J Geophys Res G Biogeosci. 2012;117:G04012.Google Scholar
- 42.Abatzoglou JT, Williams AP. Impact of anthropogenic climate change on wildfire across western US forests. Proc Natl Acad Sci. 2016;113:11770–5.CrossRefGoogle Scholar
- 43.Riley KL, Abatzoglou JT, Grenfell IC, Klene AE, Heinsch FA. The relationship of large fire occurrence with drought and fire danger indices in the western USA, 1984-2008: the role of temporal scale. Int J Wildl Fire. 2013;22:894–909.CrossRefGoogle Scholar
- 44.Seager R, Hooks A, Williams AP, Cook B, Nakamura J, Henderson N. Climatology, variability, and trends in the U.S. vapor pressure deficit, an important fire-related meteorological quantity. J Appl Meteorol Climatol. 2015;54:1121–41.CrossRefGoogle Scholar
- 45.Held IM, Soden BJ. Robust responses of the hydrological cycle to global warming. J Clim. 2006;19:5686–99.CrossRefGoogle Scholar
- 46.Williams AP, Seager R, Macalady AK, Berkelhammer M, Crimmins MA, Swetnam TW, et al. Correlations between components of the water balance and burned area reveal new insights for predicting forest fire area in the southwest United States. Int J Wildl Fire. 2015;24:14–26.CrossRefGoogle Scholar
- 47.Abatzoglou JT, Kolden CA. Relationships between climate and macroscale area burned in the western United States. Int J Wildl Fire. 2013;22:1003–20.CrossRefGoogle Scholar
- 48.Sedano F, Randerson JT. Multi-scale influence of vapor pressure deficit on fire ignition and spread in boreal forest ecosystems. Biogeosciences. 2014;11:3739–55.CrossRefGoogle Scholar
- 49.Morton DC, Collatz GJ, Wang D, Randerson JT, Giglio L, Chen Y. Satellite-based assessment of climate controls on US burned area. Biogeosciences. 2013;10:247–60.CrossRefGoogle Scholar
- 50.Holden ZA, Swanson A, Luce CH, Jolly WM, Maneta M, Oyler JW, et al. Decreasing fire season precipitation increased recent western US forest wildfire activity. Proc Natl Acad Sci. 2018;115:E8349–57.CrossRefGoogle Scholar
- 51.Barnett TP, Adam JC, Lettenmaier DP. Potential impacts of a warming climate on water availability in snow-dominated regions. Nature. 2005;438:303–9.CrossRefGoogle Scholar
- 52.Westerling AL, Hidalgo HG, Cayan DR, Swetnam TW. Warming and earlier spring increase Western U.S. forest wildfire activity. Science (80-). 2006;313:940–3.CrossRefGoogle Scholar
- 53.Woodhouse CA, Meko DM, MacDonald GM, Stahle DW, Cook ER. A 1,200-year perspective of 21st century drought in southwestern North America. Proc Natl Acad Sci. 2010;107:21283–8. https://doi.org/10.1073/pnas.0911197107.CrossRefGoogle Scholar
- 54.Westerling ALR. Increasing western US forest wildfire activity: sensitivity to changes in the timing of spring. Philos Trans R Soc B Biol Sci. 2016;371:20150178.CrossRefGoogle Scholar
- 55.Kitzberger T, Falk DA, Westerling AL, Swetnam TW. Direct and indirect climate controls predict heterogeneous early-mid 21st century wildfire burned area across western and boreal North America. PLoS One. 2017;12:e0188486.CrossRefGoogle Scholar
- 56.Urbanski SP, Reeves MC, Corley R, Silverstein R, Hao WM. Contiguous United States wildland fire emission estimates during 2003–2015. Earth Syst Sci Data Discuss. 2018;10:2241–74 Available from: https://www.earth-syst-sci-data-discuss.net/essd-2018-100/.CrossRefGoogle Scholar
- 57.Akagi SK, Yokelson RJ, Wiedinmyer C, Alvarado MJ, Reid JS, Karl T, et al. Emission factors for open and domestic biomass burning for use in atmospheric models. Atmos Chem Phys. 2011;11:4039–72.CrossRefGoogle Scholar
- 58.Urbanski S. Wildland fire emissions, carbon, and climate: emission factors. For Ecol Manag. 2014;317:51–60.CrossRefGoogle Scholar
- 59.van der Werf GR, Randerson JT, Giglio L, Van Leeuwen TT, Chen Y, Rogers BM, et al. Global fire emissions estimates during 1997-2016. Earth Syst Sci Data. 2017;9:697–720.CrossRefGoogle Scholar
- 60.Boden TA, Marland G, Andres RJ. Global, regional, and national fossil-fuel CO2 emissions [Internet]. Oak Ridge, TN; 2017. Available from: http://cdiac.ess-dive.lbl.gov/trends/emis/tre_glob_2014.html. Accessed 10/26/18.
- 61.Loehman RA, Reinhardt E, Riley KL. Wildland fire emissions, carbon, and climate: Seeing the forest and the trees - A cross-scale assessment of wildfire and carbon dynamics in fire-prone, forested ecosystems. For Ecol Manag Elsevier B.V. 2014;317:9–19. https://doi.org/10.1016/j.foreco.2013.04.014.CrossRefGoogle Scholar
- 62.Vakkari V, Beukes JP, Maso MD, Aurela M, Miroslav J, van Zyl PG. Major secondary aerosol formation in southern African open biomass burning plumes. Nat Geosci. 2018;11:580–3 Available from: https://www.nature.com/articles/s41561-018-0170-0.CrossRefGoogle Scholar
- 63.Langmann B, Duncan B, Textor C, Trentmann J, van der Werf GR. Vegetation fire emissions and their impact on air pollution and climate. Atmos Environ. 2009;43:107–16.CrossRefGoogle Scholar
- 64.Fisk WJ, Chan WR. Health benefits and costs of filtration interventions that reduce indoor exposure to PM2.5 during wildfires. Indoor Air. 2017;27:191–204.CrossRefGoogle Scholar
- 65.Liu JC, Pereira G, Uhl SA, Bravo MA, Bell ML. A systematic review of the physical health impacts from non-occupational exposure to wildfire smoke. Environ Res. Elsevier. 2015;136:120–32. https://doi.org/10.1016/j.envres.2014.10.015.CrossRefGoogle Scholar
- 66.Williamson GJ, Bowman DMJS, Price OF, Henderson SB, Johnston FH. A transdisciplinary approach to understanding the health effects of wildfire and prescribed fire smoke regimes. Environ Res Lett. IOP Publishing. 2016;11:125009.CrossRefGoogle Scholar
- 67.Reisen F, Durán S, Flannigan M, Elliott C, Rideout K. Wildfire smoke and public health risk. Int J Wildl Fire. 2015;24:1029–44.CrossRefGoogle Scholar
- 68.Johnston FH, Henderson SB, Chen Y, Randerson JT, Marlier M, DeFries RS, et al. Estimated global mortality attributable to smoke from landscape fires. Environ Health Perspect. 2012;120:695–701 Available from: http://ehp.niehs.nih.gov/1104422.CrossRefGoogle Scholar
- 69.Knorr W, Jiang L, Arneth A. Climate, CO2 and human population impacts on global wildfire emissions. Biogeosciences. 2016;13:267–82.CrossRefGoogle Scholar
- 70.Kloster S, Mahowald NM, Randerson JT, Lawrence PJ. The impacts of climate, land use, and demography on fires during the 21st century simulated by CLM-CN. Biogeosciences. 2012;9:509–25.CrossRefGoogle Scholar
- 71.Riley KL, Loehman RA. Mid-21st century climate changes increase predicted fire occurrence and fire season length, northern Rocky Mountains, United States. Ecosphere. 2016;7.Google Scholar
- 72.Williams HL. Economic efficiency of fuel reduction treatments in the home ignition zone to mitigate wildfire risk in Montana, USA. University of Montana; 2015.Google Scholar
- 73.Le Page Y. Sensitivity of vegetation fires to climate , vegetation , and anthropogenic drivers in the HESFIRE model: consequences for fire modeling and projection uncertainties. In: Riley KL, Thompson MP, Webley P, editors. Am Geophys Union Geophys Monogr 223 Nat Hazard Uncertain Assess Model Decis Support. Hoboken, New Jersey: John Wiley & Sons; 2017. p. 277–85.Google Scholar
- 74.Woodall CW, Domke GM, Riley KL, Oswalt CM, Crocker SJ, Yohe GW. A framework for assessing global change risks to forest carbon stocks in the United States. PLoS One. 2013;8:e73222.CrossRefGoogle Scholar
- 75.Brienen RJW, Phillips OL, Feldpausch TR, Gloor E, Baker TR, Lloyd J, et al. Long-term decline of the Amazon carbon sink. Nature Nature Publishing Group. 2015;519:344–8. https://doi.org/10.1038/nature14283.CrossRefGoogle Scholar
- 76.Swann ALS, Laguë MM, Garcia ES, Field JP, Breshears DD, Moore DJP, et al. Continental-scale consequences of tree die-offs in North America: identifying where forest loss matters most. Environ Res Lett. 2018;13:055014.CrossRefGoogle Scholar
- 77.Krawchuk MA, Moritz MA, Parisien MA, Van Dorn J, Hayhoe K. Global pyrogeography: the current and future distribution of wildfire. PLoS One. 2009;4:e5102.CrossRefGoogle Scholar
- 78.Kirtman B, Power SB, Adedoyin AJ, Boer GJ, Bojariu R, Camilloni I, et al. Near-term climate change: projections and predictability. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, et al., editors. Clim Chang 2013 Phys Sci Basis Contrib Work Gr I to Fifth Assess Rep Intergov Panel Clim Chang. New York, New York: Cambridge University Press; 2013. p. 953–1028. Available from: http://ebooks.cambridge.org/ref/id/CBO9781107415324A031.Google Scholar
- 79.Knutti R, Sedláček J. Robustness and uncertainties in the new CMIP5 climate model projections. Nat Clim Chang. Nature Publishing Group. 2013;3:369–73. https://doi.org/10.1038/nclimate1716.CrossRefGoogle Scholar
- 80.Gettelman A, Rood RB. Demystifying climate models: a users guide to earth system models. Springer Nature; 2016.Google Scholar
- 81.Flannigan M, Cantin AS, de Groot WJ, Wotton M, Newbery A, Gowman LM. Global wildland fire season severity in the 21st century. For Ecol Manag. 2013;294:54–61.CrossRefGoogle Scholar
- 82.Bedia J, Herrera S, Gutiérrez JM, Benali A, Brands S, Mota B, et al. Global patterns in the sensitivity of burned area to fire-weather: Implications for climate change. Agric For Meteorol. Elsevier B.V. 2015;214–215:369–79. https://doi.org/10.1016/j.agrformet.2015.09.002.CrossRefGoogle Scholar
- 83.Mankin JS, Smerdon JE, Cook BI, Williams AP, Seager R. The curious case of projected twenty-first-century drying but greening in the American West. J Clim. 2017;30:8689–710.CrossRefGoogle Scholar
- 84.Bradstock RA. A biogeographic model of fire regimes in Australia: current and future implications. Glob Ecol Biogeogr. 2010;19:145–58.CrossRefGoogle Scholar
- 85.Abatzoglou JT, Williams AP, Boschetti L, Zubkova M, Kolden CA. Global patterns of interannual climate-fire relationships. Glob Chang Biol. 2018;00:1–12. https://doi.org/10.1111/gcb.14405.CrossRefGoogle Scholar
- 86.Krawchuk MA, Moritz MA. Constraints on global fire activity vary across a resource gradient. Ecology. 2011;92:121–32.CrossRefGoogle Scholar
- 87.Boisvenue C, Running SW. Impacts of climate change on natural forest productivity - evidence since the middle of the 20th century. Glob Chang Biol. 2006;12:862–82.CrossRefGoogle Scholar
- 88.Seager R, Naik N, Vecchi GA. Thermodynamic and dynamic mechanisms for large-scale changes in the hydrological cycle in response to global warming. J Clim. 2010;23:4651–68.CrossRefGoogle Scholar
- 89.Jönsson AM, Bärring L. Future climate impact on spruce bark beetle life cycle in relation to uncertainties in regional climate model data ensembles. Tellus Ser A Dyn Meteorol Oceanogr. 2011;63A:158–73.CrossRefGoogle Scholar
- 90.Lange H, Økland B, Krokene P. Thresholds in the life cycle of the spruce bark beetle under climate change. Interjournal Complex Syst. 2006;1648.Google Scholar
- 91.Bentz BJ, Regniere J, Fettig CJ, Hansen EM, Hayes JL, Hicke JA, et al. Climate change and bark beetles of the western United States and Canada: direct and indirect effects. Bioscience. 2010;60:602–13.CrossRefGoogle Scholar
- 92.Carroll AL, Taylor SW, Régnière J, Safranyik L. Effect of climate change on range expansion by the mountain pine beetle in British Columbia. In: Shore TL, Brooks JE, Stone JE, editors. Mt Pine Beetle Symp Challenges Solut Oct 30–31, 2003 Kelowna, BC. Victoria, BC: Natural Resources Canada, Information Report BC-X-399; 2003. p. 223–32.Google Scholar
- 93.Raffa KF, Aukema BH, Bentz BJ, Carroll AL, Hicke JA, Turner MG, et al. Cross-scale drivers of natural disturbances prone to anthropogenic amplification: the dynamics of bark beetle eruptions. Bioscience. 2008;58:501–17 Available from: http://academic.oup.com/bioscience/article/58/6/501/235938/Crossscale-Drivers-of-Natural-Disturbances-Prone.CrossRefGoogle Scholar
- 94.Anderegg WRL, Hicke JA, Fisher RA, Allen CD, Aukema J, Bentz BJ, et al. Tree mortality from drought, insects, and their interactions in a changing climate. New Phytol. 2015;208:674–83.CrossRefGoogle Scholar
- 95.Trumbore S, Brando P, Hartmann H. Forest health and global change. Science (80-). 2015;349:814–8 Available from: http://www.ncbi.nlm.nih.gov/pubmed/26293952.CrossRefGoogle Scholar
- 96.Jactel H, Petit J, Desprez-Loustau ML, Delzon S, Piou D, Battisti A, et al. Drought effects on damage by forest insects and pathogens: a meta-analysis. Glob Chang Biol. 2012;18:267–76.CrossRefGoogle Scholar
- 97.O’Connor CD, Lynch AM, Falk DA, Swetnam TW. Post-fire forest dynamics and climate variability affect spatial and temporal properties of spruce beetle outbreaks on a Sky Island mountain range. For Ecol Manage. Elsevier B.V. 2015;336:148–62. https://doi.org/10.1016/j.foreco.2014.10.021.CrossRefGoogle Scholar
- 98.Harvey BJ, Donato DC, Turner MG. Recent mountain pine beetle outbreaks, wildfire severity, and postfire tree regeneration in the US Northern Rockies. Proc Natl Acad Sci. 2014;111:15120–5.CrossRefGoogle Scholar
- 99.Hart SJ, Schoennagel T, Veblen TT, Chapman TB. Area burned in the western United States is unaffected by recent mountain pine beetle outbreaks. Proc Natl Acad Sci. 2015;112:4375–80. https://doi.org/10.1073/pnas.1424037112.CrossRefGoogle Scholar
- 100.Pendergrass AG, Knutti R, Lehner F, Deser C, Sanderson BM. Precipitation variability increases in a warmer climate. Sci Rep. Springer US. 2017;7:1–9. https://doi.org/10.1038/s41598-017-17966-y.CrossRefGoogle Scholar
- 101.Swain DL, Langenbrunner B, Neelin JD, Hall A. Increasing precipitation volatility in twenty-first-century California. Nat Clim Chang. Springer US. 2018;8:427–33. https://doi.org/10.1038/s41558-018-0140-y.CrossRefGoogle Scholar
- 102.Allen CD, Macalady AK, Chenchouni H, Bachelet D, McDowell N, Vennetier M, et al. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For Ecol Manag. 2010;259:660–84.CrossRefGoogle Scholar
- 103.Cobb RC, Chan MN, Meentemeyer RK, Rizzo DM. Common factors drive disease and coarse woody debris dynamics in forests impacted by sudden oak death. Ecosystems. 2012;15:242–55.CrossRefGoogle Scholar
- 104.Hansen WD, Braziunas KH, Rammer W, Seidl R, Turner MG. It takes a few to tango: changing climate and fire regimes can cause regeneration failure of two subalpine conifers. Ecology. 2018;99:966–77.CrossRefGoogle Scholar
- 105.Clark JS. Testing disturbance theory with long-term data: alternative life-history solutions to the distribution of events. 148. 1996;148:976–96.Google Scholar
- 106.Zhang X, Liu H, Zhang M. Double ITCZ in coupled ocean-atmosphere models: from CMIP3 to CMIP5. Geophys Res Lett. 2015;42:8651–9.CrossRefGoogle Scholar
- 107.Bony S, Stevens B, Frierson DMW, Jakob C, Kageyama M, Pincus R, et al. Clouds, circulation and climate sensitivity. Nat Geosci. Nature Publishing Group. 2015;8:261–8. https://doi.org/10.1038/ngeo2398.CrossRefGoogle Scholar
- 108.Burgman RJ, Kirtman BP, Clement AC, Vazquez H. Model evidence for low-level cloud feedback driving persistent changes in atmospheric circulation and regional hydroclimate. Geophys Res Lett. 2017;44:428–37.CrossRefGoogle Scholar
- 109.Klein SA, Hall A, Norris JR, Pincus R. Low-cloud feedbacks from cloud-controlling factors: a review. Surv Geophys Springer Netherlands. 2017;38:1307–29.CrossRefGoogle Scholar
- 110.van Vuuren DP, Edmonds J, Kainuma M, Riahi K, Thomson A, Hibbard K, et al. The representative concentration pathways: an overview. Clim Chang. 2011;109:5–31.CrossRefGoogle Scholar
- 111.Schweizer VJ, O’Neill BC. Systematic construction of global socioeconomic pathways using internally consistent element combinations. Clim Chang. 2014;122:431–45.CrossRefGoogle Scholar
- 112.Cohen J, Screen JA, Furtado JC, Barlow M, Whittleston D, Coumou D, et al. Recent Arctic amplification and extreme mid-latitude weather. Nat Geosci. Nature Publishing Group. 2014;7:627–37. https://doi.org/10.1038/ngeo2234.CrossRefGoogle Scholar
- 113.Barnes EA, Screen JA. The impact of Arctic warming on the mid-latitude jet-stream: can it? Has it? Will it? Wiley Interdiscip Rev Clim Chang. 2015;6:277–86.CrossRefGoogle Scholar
- 114.Knapp PA, Soulé PT. Spatio-temporal linkages between declining Arctic sea-ice extent and increasing wildfire activity in the western United States. Forests. 2017;8:1–13.CrossRefGoogle Scholar
- 115.Francis JA, Vavrus SJ. Evidence linking Arctic amplification to extreme weather in mid-latitudes. Geophys Res Lett. 2012;39:L06801.CrossRefGoogle Scholar
- 116.Dannenberg MP, Wise EK. Shifting Pacific storm tracks as stressors to ecosystems of western North America. Glob Chang Biol. 2017;23:4896–906.CrossRefGoogle Scholar
- 117.Barnes EA. Revisiting the evidence linking Arctic amplification to extreme weather in midlatitudes. Geophys Res Lett. 2013;40:4734–9.CrossRefGoogle Scholar
- 118.Screen JA, Simmonds I. Exploring links between Arctic amplification and mid-latitude weather. Geophys Res Lett. 2013;40:959–64.CrossRefGoogle Scholar
- 119.Woollings T, Czuchnicki C, Franzke C. Twentieth century North Atlantic jet variability. Q J R Meteorol Soc. 2014;140:783–91.CrossRefGoogle Scholar
- 120.Walsh JE. Intensified warming of the Arctic: causes and impacts on middle latitudes. Glob Planet Change. Elsevier B.V. 2014;117:52–63. https://doi.org/10.1016/j.gloplacha.2014.03.003.CrossRefGoogle Scholar
- 121.Barnes EA, Polvani L. Response of the midlatitude jets, and of their variability, to increased greenhouse gases in the CMIP5 models. J Clim. 2013;26:7117–35.CrossRefGoogle Scholar
- 122.Barnes EA, Polvani LM. CMIP5 projections of arctic amplification, of the North American/North Atlantic circulation, and of their relationship. J Clim. 2015;28:5254–71.CrossRefGoogle Scholar
- 123.Shaw TA, Voigt A. Tug of war on summertime circulation between radiative forcing and sea surface warming. Nat Geosci. 2015;8:560–6.CrossRefGoogle Scholar
- 124.Fasullo JT, Otto-Bliesner BL, Stevenson S. ENSO’s changing influence on temperature, precipitation, and wildfire in a warming climate. Geophys Res Lett. 2018;45:9216–25.CrossRefGoogle Scholar
- 125.Schoennagel T, Veblen TT, Romme WH, Sibold JS, Cook ER. ENSO and PDO variability affect drought-induced fire occurrence in Rocky Mountain subalpine forests. Ecol Appl. 2005;15:2000–14.CrossRefGoogle Scholar
- 126.Cai W, Santoso A, Wang G, Yeh S-W, An S-I, Cobb KM, et al. ENSO and greenhouse warming. Nat Clim Chang. Nature Publishing Group. 2015;5:849–59. https://doi.org/10.1038/nclimate2743.CrossRefGoogle Scholar
- 127.Chen C, Cane MA, Wittenberg AT, Chen D. ENSO in the CMIP5 simulations: life cycles, diversity, and responses to climate change. J Clim. 2017;30:775–801. https://doi.org/10.1175/JCLI-D-15-0901.1.CrossRefGoogle Scholar
- 128.Bachelet D, Sheehan T, Ferschweiler K, Abatzoglou JT. Simulating vegetation change, carbon cycling, and fire over the western United States using CMIP5 climate projections. In: Riley KL, Webley P, Thompson MP, editors. Am Geophys Union Geophys Monogr 223 Nat Hazard Uncertain Assess Model Decis Support. Hoboken, New Jersey: John Wiley & Sons; 2017. p. 257–75.Google Scholar
- 129.Ballantyne AP, Alden CB, Miller JB, Tans PP, White JWC. Increase in observed net carbon dioxide uptake by land and oceans during the past 50 years. Nature. Nature Publishing Group. 2012;488:70–3. https://doi.org/10.1038/nature11299.CrossRefGoogle Scholar
- 130.Yin D, Roderick ML, Leech G, Sun F, Huang Y. The contribution of reduction in evaporative cooling to higher surface air temperatures during drought. Geophys Res Lett. 2014;41:7891–7.CrossRefGoogle Scholar
- 131.Koster RD, Chang Y, Wang H, Schubert SD. Impacts of local soil moisture anomalies on the atmospheric circulation and on remote surface meteorological fields during boreal summer: a comprehensive analysis over North America. J Clim. 2016;29:7345–64.CrossRefGoogle Scholar
- 132.Anderegg WRL, Ballantyne AP, Smith WK, Majkut J, Rabin S, Beaulieu C, et al. Tropical nighttime warming as a dominant driver of variability in the terrestrial carbon sink. Proc Natl Acad Sci. 2015;112:15591–6. https://doi.org/10.1073/pnas.1521479112.CrossRefGoogle Scholar
- 133.Anderegg WRL, Schwalm C, Biondi F, Camarero JJ, Koch G, Litvak M, et al. Pervasive drought legacies in forest ecosystems and their implications for carbon cycle models. Science (80-). 2015;349:528–32. https://doi.org/10.1126/science.aab1833.CrossRefGoogle Scholar
- 134.Schimel D, Stephens BB, Fisher JB. Effect of increasing CO2 on the terrestrial carbon cycle. Proc Natl Acad Sci. 2015;112:436–41. https://doi.org/10.1073/pnas.1407302112.CrossRefGoogle Scholar
- 135.Smith WK, Reed SC, Cleveland CC, Ballantyne AP, Anderegg WRL, Wieder WR, et al. Large divergence of satellite and earth system model estimates of global terrestrial CO2 fertilization. Nat Clim Chang. 2016;6:306–10.CrossRefGoogle Scholar
- 136.Wieder WR, Cleveland CC, Smith WK, Todd-Brown K. Future productivity and carbon storage limited by terrestrial nutrient availability. Nat Geosci. 2015;8:441–4.CrossRefGoogle Scholar
- 137.Hartmann H, Moura CF, Anderegg WRL, Ruehr NK, Salmon Y, Allen CD, et al. Research frontiers for improving our understanding of drought-induced tree and forest mortality. New Phytol. 2018;218:15–28.CrossRefGoogle Scholar
- 138.Pellegrini AFA, Ahlström A, Hobbie SE, Reich PB, Nieradzik LP, Staver AC, et al. Fire frequency drives decadal changes in soil carbon and nitrogen and ecosystem productivity. Nature. Nature Publishing Group. 2018;553:194–8. https://doi.org/10.1038/nature24668.CrossRefGoogle Scholar
- 139.Quesada B, Arneth A, Robertson E, de Noblet-Ducoudré N. Potential strong contribution of future anthropogenic land-use and land-cover change to the terrestrial carbon cycle. Environ Res Lett. 2018;13:064023.CrossRefGoogle Scholar
- 140.Trugman AT, Medvigy D, Mankin JS, Anderegg WRL. Soil moisture stress as a major driver of carbon cycle uncertainty. Geophys Res Lett. 2018;45:6495–503.CrossRefGoogle Scholar
- 141.Houghton RA, Skole DL, Nobre CA, Hackler JL, Lawrence KT, Chomentowski WH. Annual fluxes of carbon from deforestation and regrowth in the Brazilian Amazon. Nature. 2000;403:301–4.CrossRefGoogle Scholar
- 142.Khabarov N, Krasovskii A, Obersteiner M, Swart R, Dosio A, San-Miguel-Ayanz J, et al. Forest fires and adaptation options in Europe. Reg Environ Chang. 2016;16:21–30.CrossRefGoogle Scholar
- 143.Thompson MP, Riley KL, Loeffler D, Haas JR. Modeling fuel treatment leverage: encounter rates, risk reduction, and suppression cost impacts. Forests. 2017;8.Google Scholar
- 144.Veira A, Lasslop G, Kloster S. Wildfires in a warmer climate: Emission fluxes, emission heights, and black carbon concentrations in 2090–2099. J Geophys Res Atmos. Wiley-Blackwell. 2016;121:3195–223. https://doi.org/10.1002/2015JD024142.CrossRefGoogle Scholar
- 145.Knorr W, Dentener F, Lamarque J-F, Jiang L, Arneth A. Wildfire air pollution hazard during the 21st century. Atmos Chem Phys. 2017 [cited 2018 Jun 5];17:9223–36. https://doi.org/10.5194/acp-17-9223-2017.CrossRefGoogle Scholar
- 146.Field RD, van der Werf GR, Shen SSP. Human amplification of drought-induced biomass burning in Indonesia since 1960. Nat Geosci. 2009;2:185–8.CrossRefGoogle Scholar
- 147.Dennison PE, Brewer SC, Arnold JD, Moritz MA. Large wildfire trends in the western United States, 1984-2011. Geophys Res Lett. 2014;41:2928–33.CrossRefGoogle Scholar
- 148.Fire Executive Council. Guidance for implementation of federal wildland fire management policy. 2009 [cited 2018 Oct 27]. Available from: http://www.nifc.gov/policies/policies_documents/GIFWFMP.pdf.
- 149.Pyne SJ. Fire in America: a cultural history of wildland and rural fire. Seattle: University of Washington Press; 1997.Google Scholar
- 150.Parks SA, Miller C, Parisien M-A, Holsinger LM, Dobrowski SZ, Abatzoglou JT. Wildland fire deficit and surplus in the western United States, 1984-2012. Ecosphere. 2015;6:275.CrossRefGoogle Scholar
- 151.North MP, Stephens SL, Collins BM, Agee JK, Aplet G, Franklin JF, et al. Reform forest fire management: agency incentives undermine policy effectiveness. Science (80-). 2015;349:1280–1.CrossRefGoogle Scholar
- 152.Naficy C, Sala A, Keeling EG, Graham J, DeLuca TH. Interactive effects of historical logging and fire exclusion on ponderosa pine forest structure in the northern Rockies. Ecol Appl. 2010;20:1851–64.CrossRefGoogle Scholar
- 153.Maloney ED, Camargo SJ, Chang E, Colle B, Fu R, Geil KL, et al. North American climate in CMIP5 experiments: part III: assessment of twenty-first-century projections. J Clim. 2014;27:2230–70.CrossRefGoogle Scholar
- 154.Riley KL, Loehman RA. Mid-21st century climate changes increase predicted fire occurrence and fire season length, Northern Rocky Mountains, United States. Ecosphere. 2016;7:e01543.CrossRefGoogle Scholar
- 155.Castellnou M, Prat-Guitart N, Arilla E, Larranaga A, Nebot E, Castellarnau X, et al. Empowering strategic decision making for wildfire management: avoiding the fear trap and creating a resilient landscape. Fire Ecol.Google Scholar
- 156.Calkin DE, Ager AA, Thompson MP, Finney MA, Lee DC, Quigley TM, et al. A comparative risk assessment framework for wildland fire management: the 2010 Cohesive Strategy science report [Internet]. Gen. Tech. Rep. RMRS-GTR-262. Fort Collins, CO; 2011. Available from: https://www.fs.fed.us/rm/pubs/rmrs_gtr262.pdf.
- 157.McDowell NG, Allen CD. Darcy’s law predicts widespread forest mortality under climate warming. Nat Clim Chang. 2015;5:669–72.CrossRefGoogle Scholar
- 158.Allen CD, Breshears DD, McDowell NG. On underestimation of global vulnerability to tree mortality and forest die-off from hotter drought in the Anthropocene. Ecosphere. 2015;6:129.CrossRefGoogle Scholar
- 159.Andrews PL, Bevins CD. BehavePlus fire modeling system, version 2: overview. 2nd Int Wildl Fire Ecol Fire Manag Congr Novemb 16-20, 2003. Orlando, Florida; 2003. p. P5.11.Google Scholar
- 160.Scott JH, Burgan RE. Standard fire behavior fuel models: a comprehensive set for use with Rothermel’s surface fire spread model. Fort Collins, Colorado; 2005.Google Scholar
- 161.Holtslag AAM, Svensson G, Baas P, Basu S, Beare B, Beljaars ACM, et al. Stable atmospheric boundary layers and diurnal cycles: challenges for weather and climate models. Bull Am Meteorol Soc. 2013;94:1691–706.CrossRefGoogle Scholar
- 162.Batllori E, Parisien MA, Krawchuk MA, Moritz MA. Climate change-induced shifts in fire for Mediterranean ecosystems. Glob Ecol Biogeogr. 2013;22:1118–29.CrossRefGoogle Scholar
- 163.Finney MA, McHugh CW, Grenfell IC, Riley KL, Short KC. A simulation of probabilistic wildfire risk components for the continental United States. Stoch Environ Res Risk Assess. 2011;25:973–1000.CrossRefGoogle Scholar
- 164.Romps DM, Seeley JT, Vollaro D, Molinari J. Projected increase in lightning strikes in the United States due to global warming. Science (80-). 2014;346:851–4.CrossRefGoogle Scholar
- 165.Magi BI. Global lightning parameterization from CMIP5 climate model output. J Atmos Ocean Technol. 2015;32:434–52.CrossRefGoogle Scholar
- 166.Littell JS. Drought and fire in the western USA: is climate attribution enough?, Curr Clim Chang Reports. Current Climate Change Reports; 2018;Google Scholar
- 167.Clark JA, Loehman RA, Keane RE. Climate changes and wildfire alter vegetation of Yellowstone National Park, but forest cover persists. Ecosphere. 2017;8:e01636.CrossRefGoogle Scholar
- 168.O’Connor CD, Garfin GM, Falk DA, Swetnam TW. Human pyrogeography: a new synergy of fire, climate and people is reshaping ecosystems across the globe. Geogr Compass. 2011;5:329–50.CrossRefGoogle Scholar
- 169.Keeley JE. Fire management impacts on invasive plants in the western United States. Conserv Biol. 2006;20:375–84.CrossRefGoogle Scholar
- 170.Turco M, Bedia J, Di Liberto F, Fiorucci P, Von Hardenberg J, Koutsias N, et al. Decreasing fires in Mediterranean Europe. PLoS One. 2016;11.Google Scholar
- 171.Chergui B, Fahd S, Santos X, Pausas JG. Socioeconomic factors drive fire-regime variability in the Mediterranean Basin. Ecosystems Springer US. 2018;21:619–28.CrossRefGoogle Scholar
- 172.Riley K, Thompson M. An uncertainty analysis of wildfire modeling. In: Riley K, Webley P, Thompson M, editors. Am Geophys Union Geophys Monogr 223 Nat Hazard Uncertain Assess Model Decis Support. Hoboken, New Jersey: John Wiley & Sons; 2017. p. 193–213.Google Scholar
- 173.Kloster S, Lasslop G. Historical and future fire occurrence (1850 to 2100) simulated in CMIP5 Earth System Models. Glob Planet Change. Elsevier B.V. 2017;150:58–69. https://doi.org/10.1016/j.gloplacha.2016.12.017.CrossRefGoogle Scholar
- 174.Hantson S, Arneth A, Harrison SP, Kelley DI, Prentice IC, Rabin SS, et al. The status and challenge of global fire modelling. Biogeosciences. 2016;13:3359–75.CrossRefGoogle Scholar
- 175.Finney MA. FARSITE: fire area simulator -- model development and evaluation. Ogden, UT; 2004.Google Scholar
- 176.Ehleringer JR, Monson RK. Evolutionary and ecological aspects of photosynthetic pathway variation. Annu Rev Ecol Syst. 1993;24:411–39.CrossRefGoogle Scholar
- 177.Keeley JE, Rundel PW. Evolution of CAM and C4 carbon-concentrating mechanisms. Int J Plant Sci. 2003;164:S55–77. https://doi.org/10.1086/374192.CrossRefGoogle Scholar