Advertisement

Current Pollution Reports

, Volume 4, Issue 3, pp 198–207 | Cite as

Ozone Production Efficiency in Highly Polluted Environments

  • Junhua Wang
  • Baozhu Ge
  • Zifa Wang
Air Pollution (Y Sun, Section Editor)
  • 64 Downloads
Part of the following topical collections:
  1. Topical Collection on Air Pollution

Abstract

When developing ozone control strategies, the empirical kinetic modeling approach curve cannot easily be applied to practical problems. On this basis, the ozone production efficiency (OPE) is proposed as an indicator to represent the effects of NOx on ozone. The research results of the OPE are reviewed and include the definition and calculation of OPE, observations and model simulations, several factors affecting the OPE, and the application of OPE. The measurements and applications of the OPE have improved and become widespread after decades of development. OPE is mostly used to measure regional atmospheric oxidation characteristics, which play an important role when developing ozone control strategies (especially in highly polluted areas). However, there have been few studies on the advancement of chemical mechanisms in the OPE in recent years. In addition, there is no detailed interpretation of the strong linear correlation between ozone and NOz. The results may be significant for improving simulation results and understanding the formation of ozone.

Keywords

Ozone production Efficiency Atmosphere Oxidation 

Notes

Acknowledgements

This work is supported by the National Natural Science Foundation of China (41575123, 41305113, 41620104008, 91744206).

Compliance with ethical standards

Conflict of Interest

The authors declare no conflicts of interest.

References

  1. 1.
    Akimoto H. Global air quality and pollution. Science. 2003;302(5651):1716–9.CrossRefGoogle Scholar
  2. 2.
    Hoshika Y, Katata G, Deushi M, Watanabe M, Koike T, Paoletti E. Ozone-induced stomatal sluggishness changes carbon and water balance of temperate deciduous forests. Sci Rep. 2015;5:09871.CrossRefGoogle Scholar
  3. 3.
    Fuhrer J, Val Martin M, Mills G, Heald CL, Harmens H, Hayes F, et al. Current and future ozone risks to global terrestrial biodiversity and ecosystem processes. Ecol Evol. 2016;6(24):8785–99.Google Scholar
  4. 4.
    Roelofs GJ, Lelieveld J. Distribution and budget of O3 in the troposphere calculation with a chemistry general-circulation model. J Geophys Res-Atmos. 1995;100(D10):20983–98.CrossRefGoogle Scholar
  5. 5.
    Chameides WL. The photochemical role of tropospheric nitrogen oxides. Geophys Res Lett. 1978;5(1):17–20.CrossRefGoogle Scholar
  6. 6.
    Simon H, Reff A, Wells B, Xing J, Frank N. Ozone trends across the United States over a period of decreasing NOx and VOC emissions. Environ Sci Technol. 2015;49(1):186–95.CrossRefGoogle Scholar
  7. 7.
    Seinfeld JH. Urban air pollution: state of the science. Science. 1989;243(4892):745–52.CrossRefGoogle Scholar
  8. 8.
    Liu SC, Trainer M, Fehsenfeld FC, Parrish DD, Williams EJ, Fahey DW, et al. Ozone production in the rural troposphere and the implications for regional and global ozone distributions. J Geophys Res Atmos. 1987;92(D4):4191–207.Google Scholar
  9. 9.
    Sadanaga Y, Kobashi T, Yuba A, Kato S, Kajii Y, Takami A, et al. Evaluation of photochemical pollution during transport of air pollutants in spring over the East China Sea. Asian J Atmos Environ. 2015;9(4):237–46.Google Scholar
  10. 10.
    Lin X, Trainer M, Liu SC. On the nonlinearity of the troposphere ozone production. J Geophys Res-Atmos. 1988;93(D12):15879–88.Google Scholar
  11. 11.
    Kleinman LI, et al. Ozone production efficiency in an urban area. J Geophys Res Atmos. 2002;107(D23):ACH 23-1–ACH 23-12.CrossRefGoogle Scholar
  12. 12.
    Trainer M, Parrish DD, Buhr MP, Norton RB, Fehsenfeld FC, Anlauf KG, et al. Correlation of ozone with NOy in photochemically aged air. J Geophys Res-Atmos. 1993;98(D2):2917–25.Google Scholar
  13. 13.
    Kleinman L, Lee YN, Springston SR, Nunnermacker L, Zhou X, Brown R, et al. Ozone formation at a rural site in the southeastern United States. J Geophys Res-Atmos. 1994;99(D2):3469–82.Google Scholar
  14. 14.
    Fahey DW, Hübler G, Parrish DD, Williams EJ, Norton RB, Ridley BA, et al. Reactive nitrogen species in the troposphere: measurements of NO, NO2, HNO3, particulate nitrate, peroxyacetyl nitrate (PAN), O3, and total reactive odd nitrogen (NO y ) at Niwot Ridge, Colorado. J Geophys Res-Atmos. 1986;91(D9):9781–93.Google Scholar
  15. 15.
    Fehsenfeld FC, Dickerson RR, Hübler G, Luke WT, Nunnermacker LJ, Williams EJ, et al. A ground-based intercomparison of NO, NO x , and NO y measurement techniques. J Geophys Res-Atmos. 1987;92(D12):14710–22.Google Scholar
  16. 16.
    John JCS, Chameides WL, Saylor R. Role of anthropogenic NOX and VOC as ozone precursors: a case study from the SOS Nashville Middle Tennessee ozone study. J Geophys Res-Atmos. 1998;103(D17):22415–23.CrossRefGoogle Scholar
  17. 17.
    Ge B, Sun Y, Liu Y, Dong H, Ji D, Jiang Q, et al. Nitrogen dioxide measurement by cavity attenuated phase shift spectroscopy (CAPS) and implications in ozone production efficiency and nitrate formation in Beijing, China. J Geophys Res Atmos. 2013;118(16):9499–509.Google Scholar
  18. 18.
    Trainer M, et al. Review of observation-based analysis of the regional factors influencing ozone concentrations. Atmos Environ. 2000;34(12–14):2045–61.CrossRefGoogle Scholar
  19. 19.
    Hirsch AI, Munger JW, Jacob DJ, Horowitz LW, Goldstein AH. Seasonal variation of the ozone production efficiency per unit NOx at Harvard Forest, Massachusetts. J Geophys Res-Atmos. 1996;101(D7):12659–66.CrossRefGoogle Scholar
  20. 20.
    Daum PH, Kleinman LI, Newman L, Luke WT, Weinstein-Lloyd J, Berkowitz CM, et al. Chemical and physical properties of plumes of anthropogenic pollutants transported over the North Atlantic during the North Atlantic Regional Experiment. J Geophys Res Atmos. 1996;101(D22):29029–42.Google Scholar
  21. 21.
    Mari C, Jacob DJ, Bechtold P. Transport and scavenging of soluble gases in a deep convective cloud. J Geophys Res-Atmos. 2000;105(D17):22255–67.CrossRefGoogle Scholar
  22. 22.
    Sauvage B, Martin RV, van Donkelaar A, Ziemke JR. Quantification of the factors controlling tropical tropospheric ozone and the South Atlantic maximum. J Geophys Res-Atmos. 2007;112:D11309.CrossRefGoogle Scholar
  23. 23.
    Cooper M, Martin RV, Sauvage B, Boone CD, Walker KA, Bernath PF, et al. Evaluation of ACE-FTS and OSIRIS satellite retrievals of ozone and nitric acid in the tropical upper troposphere: application to ozone production efficiency. J Geophys Res. 2011;116:D12306.CrossRefGoogle Scholar
  24. 24.
    Zaveri RA. Ozone production efficiency and NOx depletion in an urban plume: interpretation of field observations and implications for evaluating O3-NOx-VOC sensitivity. J Geophys Res. 2003;108(D14):4436.CrossRefGoogle Scholar
  25. 25.
    Zhou W, Cohan DS, Pinder RW, Neuman JA, Holloway JS, Peischl J, et al. Observation and modeling of the evolution of Texas power plant plumes. Atmos Chem Phys. 2012;12(1):455–68.Google Scholar
  26. 26.
    Kijima T, et al. Measurements and analysis of reactive nitrogen species in the rural troposphere of Southeast United States: southern oxidant study site SONIA. Atmos Environ. 1996;30(4):649–59.CrossRefGoogle Scholar
  27. 27.
    Olszyna KJ, Bailey EM, Simonaitis R, Meagher JF. O3 and NOy relationships at a rural site. J Geophys Res Atmos. 1994;99(D7):14557–63.CrossRefGoogle Scholar
  28. 28.
    Kasibhatla P, Chameides WL, Saylor RD, Olerud D. Relationships between regional ozone pollution and emissions of nitrogen oxides in the eastern United States. J Geophys Res Atmos. 1998;103(D17):22663–9.CrossRefGoogle Scholar
  29. 29.
    Kleinman LI, Daum PH, Imre DG, Lee JH, Lee YN, Nunnermacker LJ, et al. Ozone production in the New York City urban plume. J Geophys Res-Atmos. 2000;105(D11):14495–511.Google Scholar
  30. 30.
    Roussel PB, Lin X, Camacho F, Laszlo S, Taylor R, Melo OT, et al. Observations of ozone and precursor levels at two sites around Toronto, Ontario, during SONTOS 92. Atmos Environ. 1996;30(30):2145–55.Google Scholar
  31. 31.
    Li SM, Anlauf KG, Wiebe HA, Bottenheim JW, Shepson PB, Biesenthal T. Emission ratios and photochemical production efficiencies of nitrogen oxides, ketones, and aldehydes in the Lower Fraser Valley during the summer Pacific 1993 oxidant study. Atmos Environ. 1997;31(14):2037–48.CrossRefGoogle Scholar
  32. 32.
    Wang T, et al. Strong ozone production in urban plumes from Beijing, China. Geophys Res Lett. 2006;33(21):320–37.CrossRefGoogle Scholar
  33. 33.
    Wang T, Nie W, Gao J, Xue LK, Gao XM, Wang XF, et al. Air quality during the 2008 Beijing Olympics: secondary pollutants and regional impact. Atmos Chem Phys. 2010;10(16):7603–15.Google Scholar
  34. 34.
    Ge BZ, Xu XB, Lin WL, Li J, Wang ZF. Impact of the regional transport of urban Beijing pollutants on downwind areas in summer: ozone production efficiency analysis. Tellus Ser B Chem Phys Meteorol. 2012;64(1):17348.CrossRefGoogle Scholar
  35. 35.
    Griffin RJ, et al. Quantification of ozone formation metrics at Thompson Farm during the New England Air Quality Study (NEAQS) 2002. J Geophys Res Atmos. 2004;109:D24302.CrossRefGoogle Scholar
  36. 36.
    Sun Y, Wang L, Wang Y, Zhang D, Quan L, Jinyuan X. In situ measurements of NO, NO2, NOy, and O3 in Dinghushan (112°E, 23°N), China during autumn 2008. Atmos Environ. 2010;44(17):2079–88.CrossRefGoogle Scholar
  37. 37.
    Ninneman M, Lu S, Lee P, McQueen J, Huang J, Demerjian K, et al. Observed and model-derived ozone production efficiency over urban and rural New York State. Atmosphere. 2017;8(7):126.Google Scholar
  38. 38.
    Trainer M, Ridley BA, Buhr MP, Kok G, Walega J, Hübler G, et al. Regional ozone and urban plumes in the southeastern United States: Birmingham, a case study. J Geophys Res-Atmos. 1995;100(D9):18823–34.Google Scholar
  39. 39.
    Berkowitz CM, et al. Chemical and meteorological characteristics associated with rapid increases of O- 3 in Houston, Texas. J Geophys Res-Atmos. 2004;109:D10307.CrossRefGoogle Scholar
  40. 40.
    Sillman S, He D, Pippin MR, Daum PH, Imre DG, Kleinman LI, et al. Model correlations for ozone, reactive nitrogen, and peroxides for Nashville in comparison with measurements: implications for O3-NOx-hydrocarbon chemistry. J Geophys Res Atmos. 1998;103(D17):22629–44.Google Scholar
  41. 41.
    Mazzuca GM, Ren X, Loughner CP, Estes M, Crawford JH, Pickering KE, et al. Ozone production and its sensitivity to NOx and VOCs: results from the DISCOVER-AQ field experiment, Houston 2013. Atmos Chem Phys. 2016;16(22):14463–74.Google Scholar
  42. 42.
    Ryerson TB. Effect of petrochemical industrial emissions of reactive alkenes and NOx on tropospheric ozone formation in Houston, Texas. J Geophys Res. 2003;108(D8):4249.CrossRefGoogle Scholar
  43. 43.
    Neuman JA, Nowak JB, Zheng W, Flocke F, Ryerson TB, Trainer M, et al. Relationship between photochemical ozone production and NOx oxidation in Houston, Texas. J Geophys Res. 2009;114:D00F08.CrossRefGoogle Scholar
  44. 44.
    Sillman S. Ozone production efficiency and loss of NOx in power plant plumes: photochemical model and interpretation of measurements in Tennessee. J Geophys Res-Atmos. 2000;105(D7):9189–202.CrossRefGoogle Scholar
  45. 45.
    Daum PH, Kleinman L, Imre DG, Nunnermacker LJ, Lee YN, Springston SR, et al. Analysis of the processing of Nashville urban emissions on July 3 and July 18, 1995. J Geophys Res-Atmos. 2000;105(D7):9155–64.Google Scholar
  46. 46.
    Nunnermacker LJ, Weinstein-Lloyd J, Kleinman L, Daum PH, Lee YN, Springston SR, et al. Ground-based and aircraft measurements of trace gases in Phoenix, Arizona (1998). Atmos Environ. 2004;38(29):4941–56.Google Scholar
  47. 47.
    Luria M, Valente RJ, Bairai S, Parkhurst WJ, Tanner RL. Airborne study of ozone formation over Dallas, Texas. Atmos Environ. 2008;42(29):6951–8.CrossRefGoogle Scholar
  48. 48.
    Chin M, Jacob DJ, Munger JW, Parrish DD, Doddridge BG. Relationship of ozone and carbon monoxide over North America. J Geophys Res-Atmos. 1994;99(D7):14565–73.CrossRefGoogle Scholar
  49. 49.
    Henneman LRF, Shen H, Liu C, Hu Y, Mulholland JA, Russell AG. Responses in ozone and its production efficiency attributable to recent and future emissions changes in the Eastern United States. Environ Sci Technol. 2017;51(23):13797–805.CrossRefGoogle Scholar
  50. 50.
    Lei W, Zavala M, de Foy B, Volkamer R, Molina LT. Characterizing ozone production and response under different meteorological conditions in Mexico City. Atmos Chem Phys. 2008;8(24):7571–81.CrossRefGoogle Scholar
  51. 51.
    Thielmann A. Sensitivity of ozone production derived from field measurements in the Italian Po basin. J Geophys Res. 2002;107(D22):8194.CrossRefGoogle Scholar
  52. 52.
    Peleg M, Luria M, Sharf G, Vanger A, Kallos G, Kotroni V, et al. Observational evidence of an ozone episode over the Greater Athens Area. Atmos Environ. 1997;31(23):3969–83.Google Scholar
  53. 53.
    Dommen J, Prévôt ASH, Hering AM, Staffelbach T, Kok GL, Schillawski RD. Photochemical production and aging of an urban air mass. J Geophys Res-Atmos. 1999;104(D5):5493–506.CrossRefGoogle Scholar
  54. 54.
    Marion T, et al. Ozone production efficiency in Savanna and forested areas during the EXPRESSO experiment. J Atmos Chem. 2001;38(1):3–30.CrossRefGoogle Scholar
  55. 55.
    Junling AN. Ozone production efficiency in Beijing area with high NOx emissions. Acta Sci Circumst. 2006;26(4):652–7.Google Scholar
  56. 56.
    Hu J, Zhang Y. Process analysis of ozone formation in the Yangtze River Delta. Res Environ Sci. 2005;18(2):13–8.Google Scholar
  57. 57.
    Fukuda M, et al. Oxidation of reactive nitrogen and ozone production in Tokyo. in AGU fall meeting. 2005.Google Scholar
  58. 58.
    Lin W, Xu X, Ge B, Liu X. Gaseous pollutants in Beijing urban area during the heating period 2007–2008: variability, sources, meteorological, and chemical impacts. Atmos Chem Phys. 2011;11(15):8157–70.CrossRefGoogle Scholar
  59. 59.
    Chou CCK, Tsai CY, Shiu CJ, Liu SC, Zhu T. Measurement of NOy during Campaign of Air Quality Research in Beijing 2006 (CAREBeijing-2006): implications for the ozone production efficiency of NOx. J Geophys Res. 2009;114:D00G01.Google Scholar
  60. 60.
    Sun Y, Wang L, Wang Y, Quan L, Zirui L. In situ measurements of SO2, NOx, NOy, andO(3) in Beijing, China during August 2008. Sci Total Environ. 2011;409(5):933–40.CrossRefGoogle Scholar
  61. 61.
    Chou CCK, Tsai CY, Chang CC, Lin PH, Liu SC, Zhu T. Photochemical production of ozone in Beijing during the 2008 Olympic Games. Atmos Chem Phys. 2011;11(18):9825–37.CrossRefGoogle Scholar
  62. 62.
    Pollack IB, Ryerson TB, Trainer M, Parrish DD, Andrews AE, Atlas EL, et al. Airborne and ground-based observations of a weekend effect in ozone,precursors, and oxidation products in the California South Coast Air Basin. J Geophys Res-Atmos. 2012;117:D00V05.CrossRefGoogle Scholar
  63. 63.
    He H, Hembeck L, Hosley KM, Canty TP, Salawitch RJ, Dickerson RR. High ozone concentrations on hot days: the role of electric power demand and NOx emissions. Geophys Res Lett. 2013;40(19):5291–4.CrossRefGoogle Scholar
  64. 64.
    McDuffie EE, Edwards PM, Gilman JB, Lerner BM, Dubé WP, Trainer M, et al. Influence of oil and gas emissions on summertime ozone in the Colorado Northern Front Range. J Geophys Res Atmos. 2016;121(14):8712–29.Google Scholar
  65. 65.
    Nunnermacker LJ, Imre D, Daum PH, Kleinman L, Lee YN, Lee JH, et al. Characterization of the Nashville urban plume on July 3 and July 18, 1995. J Geophys Res-Atmos. 1998;103(D21):28129–48.Google Scholar
  66. 66.
    Luria M, et al. Ozone yields and production efficiencies in a large power plant plume. Atmos Environ. 2003;37(25):3593–603.CrossRefGoogle Scholar
  67. 67.
    Imhoff RE, et al. The production of O3 in an urban plume: airborne sampling of the Atlanta urban plume. Atmos Environ. 1995;29(17):2349–58.CrossRefGoogle Scholar
  68. 68.
    Prevot ASH, et al. The Milan photooxidant plume. J Geophys Res-Atmos. 1997;102(D19):23375–88.CrossRefGoogle Scholar
  69. 69.
    Ridley BA, Walega JG, Lamarque JF, Grahek FE, Trainer M, Hübler G, et al. Measurements of reactive nitrogen and ozone to 5-km altitude in June 1990 over the southeastern United States. J Geophys Res-Atmos. 1998;103(D7):8369–88.Google Scholar
  70. 70.
    Fischer H, Kormann R, Klüpfel T, Gurk C, Königstedt R, Parchatka U, et al. Ozone production and trace gas correlations during the June 2000 MINATROC intensive measurement campaign at Mt. Cimone. Atmos Chem Phys. 2003;3:725–38.Google Scholar
  71. 71.
    Carpenter LJ, Green TJ, Mills GP, Bauguitte S, Penkett SA, Zanis P, et al. Oxidized nitrogen and ozone production efficiencies in the springtime free troposphere over the Alps. J Geophys Res Atmos. 2000;105(D11):14547–59.Google Scholar
  72. 72.
    Zanis P, Ganser A, Zellweger C, Henne S, Steinbacher M, Staehelin J. Seasonal variability of measured ozone production efficiencies in the lower free troposphere of Central Europe. Atmos Chem Phys. 2007;7:223–36.CrossRefGoogle Scholar
  73. 73.
    Jaffe DA, Honrath RE, Zhang L, Akimoto H, Shimizu A, Mukai H, et al. Measurements of NO, NOy, CO and O3 and estimation of the ozone production rate at Oki Island, Japan, during PEM-West. J Geophys Res-Atmos. 1996;101(D1):2037–48.Google Scholar
  74. 74.
    Wang T, Carroll MA, Albercook GM, Owens KR, Duderstadt KA, Markevitch AN, et al. Ground-based measurements of NOx and total reactive oxidized nitrogen (NOy) at Sable Island, Nova Scotia, during the NARE 1993 summer intensive. J Geophys Res-Atmos. 1996;101(D22):28991–9004.Google Scholar
  75. 75.
    Davis DD, Crawford J, Chen G, Chameides W, Liu S, Bradshaw J, et al. Assessment of ozone photochemistry in the western North Pacific as inferred from PEM-West A observations during the fall 1991. J Geophys Res-Atmos. 1996;101(D1):2111–34.Google Scholar
  76. 76.
    Rickard AR, Salisbury G, Monks PS, Lewis AC, Baugitte S, Bandy BJ, et al. Comparison of measured ozone production efficiencies in the marine boundary layer at two European coastal sites under different pollution regimes. J Atmos Chem. 2002;43(2):107–34.Google Scholar
  77. 77.
    Hudman RC, Jacob DJ, Cooper OR, Evans MJ, Heald CL, Park RJ, et al. Ozone production in transpacific Asian pollution plumes and implications for ozone air quality in California. J Geophys Res-Atmos. 2004;109(D23):D23S10.CrossRefGoogle Scholar
  78. 78.
    Kuhn U, Ganzeveld L, Thielmann A, Dindorf T, Schebeske G, Welling M, et al. Impact of Manaus City on the Amazon Green Ocean atmosphere: ozone production, precursor sensitivity and aerosol load. Atmos Chem Phys. 2010;10(19):9251–82.Google Scholar
  79. 79.
    Ge BZ, et al. Observational study of ozone production efficiency at the Shangdianzi regional background station. Environ Sci. 2010;31(7):1444.Google Scholar
  80. 80.
    Daum PH. A comparative study of O3formation in the Houston urban and industrial plumes during the 2000 Texas Air Quality Study. J Geophys Res. 2003;108(D23):4715.CrossRefGoogle Scholar
  81. 81.
    Neuman JA, Parrish DD, Ryerson TB, Brock CA, Wiedinmyer C, Frost GJ, et al. Nitric acid loss rates measured in power plant plumes. J Geophys Res Atmos. 2004;109(D23):D23304.CrossRefGoogle Scholar
  82. 82.
    Sun L, Xue L, Wang T, Gao J, Ding A, Cooper OR, et al. Significant increase of summertime ozone at Mount Tai in Central Eastern China. Atmos Chem Phys. 2016;16(16):10637–50.Google Scholar
  83. 83.
    Luria M, Tanner RL, Imhoff RE, Valente RJ, Bailey EM, Mueller SF. Influence of natural hydrocarbons on ozone formation in an isolated power plant plume. J Geophys Res-Atmos. 2000;105(D7):9177–88.CrossRefGoogle Scholar
  84. 84.
    Ryerson TB, Trainer M, Holloway JS, Parrish DD, Huey LG, Sueper DT, et al. Observations of ozone formation in power plant plumes and implications for ozone control strategies. Science. 2001;292(5517):719–23.Google Scholar
  85. 85.
    Sillman S. The relation between ozone, NOx and hydrocarbons in urban and polluted rural environments. Atmos Environ. 1999;33(12):1821–45.CrossRefGoogle Scholar
  86. 86.
    Jeon W-B, Lee SH, Lee H, Park C, Kim DH, Park SY. A study on high ozone formation mechanism associated with change of NOx/VOCs ratio at a rural area in the Korean peninsula. Atmos Environ. 2014;89:10–21.CrossRefGoogle Scholar
  87. 87.
    Wang YH, Hu B, Ji DS, Liu ZR, Tang GQ, Xin JY, et al. Ozone weekend effects in the Beijing–Tianjin–Hebei metropolitan area, China. Atmos Chem Phys. 2014;14(5):2419–29.Google Scholar
  88. 88.
    Zhou W, Cohan DS, Henderson BH. Slower ozone production in Houston, Texas following emission reductions: evidence from Texas Air Quality Studies in 2000 and 2006. Atmos Chem Phys. 2014;14(6):2777–88.CrossRefGoogle Scholar
  89. 89.
    Real E, Law KS, Weinzierl B, Fiebig M, Petzold A, Wild O, et al. Processes influencing ozone levels in Alaskan forest fire plumes during long-range transport over the North Atlantic. J Geophys Res-Atmos. 2007;112(D10):D10S41.CrossRefGoogle Scholar
  90. 90.
    Hauglustaine DA, Brasseur GP, Levine JS. A sensitivity simulation of tropospheric ozone changes due to the 1997 Indonesian fire emissions. Geophys Res Lett. 1999;26(21):3305–8.CrossRefGoogle Scholar
  91. 91.
    Ryerson TB, Buhr MP, Frost GJ, Goldan PD, Holloway JS, Hübler G, et al. Emissions lifetimes and ozone formation in power plant plumes. J Geophys Res-Atmos. 1998;103(D17):22569–83.Google Scholar
  92. 92.
    Couach O, Kirchner F, Jimenez R, Balin I, Perego S, van den Bergh H. A development of ozone abatement strategies for the Grenoble area using modeling and indicators. Atmos Environ. 2004;38(10):1425–36.CrossRefGoogle Scholar
  93. 93.
    Shiu C-J, Liu SC, Chang CC, Chen JP, Chou CCK, Lin CY, et al. Photochemical production of ozone and control strategy for Southern Taiwan. Atmos Environ. 2007;41(40):9324–40.Google Scholar
  94. 94.
    Xiaobin XU, Baozhu GE, Weili LIN. Progresses in the research of ozone production efficiency (OPE). Adv Earth Science. 2009;24(8):845–53.Google Scholar
  95. 95.
    Xue LK, Wang T, Zhang JM, Zhang XC, Deliger, Poon CN, et al. Source of surface ozone and reactive nitrogen speciation at Mount Waliguan in western China: new insights from the 2006 summer study. J Geophys Res-Atmos. 2011;116:D07306.Google Scholar
  96. 96.
    Sillman S. The use of NOy, H2O2,and HNO3 as indications for ozone- NOx-hydrocarbon sensitivity in urban locations. J Geophys Res-Atmos. 1995;100(D7):14175–88.CrossRefGoogle Scholar
  97. 97.
    Kleanthous S, et al. On the temporal and spatial variation of ozone in Cyprus. Sci Total Environ. 2014;476–477:677–87.Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric PhysicsChinese Academy of SciencesBeijingChina
  2. 2.University of Chinese Academy of SciencesBeijingChina

Personalised recommendations