Current Pollution Reports

, Volume 3, Issue 2, pp 79–87 | Cite as

Degradation of N-Nitrosodimethylamine by UV-Based Advanced Oxidation Processes for Potable Reuse: a Short Review

  • Takahiro FujiokaEmail author
  • Shunya Masaki
  • Hitoshi Kodamatani
  • Keisuke Ikehata
Water Pollution (S Sengupta and L Nghiem, Section Editors)
Part of the following topical collections:
  1. Topical Collection on Water Pollution


The ultraviolet (UV)-based advanced oxidation process (AOP) is a powerful technology commonly utilised in recent potable water reuse (PR) schemes. The AOP involves the generation of highly reactive free radicals (e.g. hydroxyl, HO) and is primarily applied for the removal of two target trace organic chemicals—N-nitrosodimethylamine (NDMA) and 1,4-dioxane — in the PR schemes. Both of these organics are not well removed by the reverse osmosis (RO) process. NDMA is a probable carcinogen and is often present in reclaimed water at concentrations higher than the guidelines established for PR. This review aimed to provide an understanding of the current UV-based advanced oxidation technologies for NDMA removal in PR, their limitations and the future of advanced technologies for their removal. NDMA is readily photolysed by direct UV irradiation, while an AOP such as UV/H2O2 process is necessary for the destruction of 1,4-dioxane. Unfortunately, the generation of hydroxyl radicals through UV photolysis of H2O2 is largely inefficient with conversion on the order of 20% under normal plant operations and the addition of H2O2 (e.g. 3 mg/L) provides only a negligible improvement in NDMA destruction. However, AOP can also be achieved without continuous chemical addition through the application of UV irradiation to heterogeneous photocatalysts (e.g. TiO2). The UV/TiO2 process generates hydroxyl radicals and singlet oxygen molecules, both of which degrade NDMA into by-products (e.g. methylamine or dimethylamine). Recent studies revealed that modification of the surface morphology of TiO2 can not only enhance NDMA destruction but also alter the composition of the degradation by-products.


N-nitrosodimethylamine (NDMA) Hydroxyl radicals Photocatalytic degradation Potable reuse Titanium oxide 1,4-Dioxane 



The authors gratefully acknowledge Dr. Kenneth P. Ishida from Orange County Water District (CA, USA) for his assistance in the preparation of this manuscript.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.


Papers of particular interest, published recently, have been highlighted as: • Of importance, •• Of major importance

  1. 1.
    Mitch WA, Sharp JO, Trussell RR, Valentine RL, Alvarez-Cohen L, Sedlak DL. N-nitrosodimethylamine (NDMA) as a drinking water contaminant: a review. Environ Eng Sci. 2003;20(5):389–404. doi: 10.1089/109287503768335896.CrossRefGoogle Scholar
  2. 2.
    Drewes JE, Khan SJ. Contemporary design, operation, and monitoring of potable reuse systems. J Water Res Desalination. 2015;5(1):1–7. doi: 10.2166/wrd.2014.148.CrossRefGoogle Scholar
  3. 3.
    USEPA. N-Nitrosodimethylamine (CASRN 62-75-9) (Accessed December 16, 2016)1993.Google Scholar
  4. 4.
    Gerrity D, Pecson B, Trussell RS, Trussell RR. Potable reuse treatment trains throughout the world. J Water Supply Res. 2013;62(6):321–38. doi: 10.2166/aqua.2013.041.CrossRefGoogle Scholar
  5. 5.
    Farré MJ, Döderer K, Hearn L, Poussade Y, Keller J, Gernjak W. Understanding the operational parameters affecting NDMA formation at advanced water treatment plants. J Hazard Mater. 2011;185(2–3):1575–81. doi: 10.1016/j.jhazmat.2010.10.090.CrossRefGoogle Scholar
  6. 6.
    Libotean D, Giralt J, Rallo R, Cohen Y, Giralt F, Ridgway HF, et al. Organic compounds passage through RO membranes. J Membr Sci. 2008;313(1–2):23–43. doi: 10.1016/j.memsci.2007.11.052.CrossRefGoogle Scholar
  7. 7.
    Fujioka T, Khan SJ, Poussade Y, Drewes JE, Nghiem LD. N-nitrosamine removal by reverse osmosis for indirect potable water reuse—a critical review based on observations from laboratory-, pilot- and full-scale studies. Sep Purif Technol. 2012;98(0):503–15. doi: 10.1016/j.seppur.2012.07.025.CrossRefGoogle Scholar
  8. 8.
    Zenker MJ, Borden RC, Barlaz MA. Occurrence and treatment of 1,4-dioxane in aqueous environments. Environ Eng Sci. 2003;20(5):423–32. doi: 10.1089/109287503768335913.CrossRefGoogle Scholar
  9. 9.
    Environment Protection and Heritage Council, National Health and Medical Research Council, Natural Resource Management Ministerial Council. Australian guidelines for water recycling: managing health and environmental risks (phase 2) - augmentation of drinking water supplies. Canberra: Government of Australia; 2008.Google Scholar
  10. 10.
    Linge KL, Blair P, Busetti F, Rodriguez C, Heitz A. Chemicals in reverse osmosis-treated wastewater: occurrence, health risk, and contribution to residual dissolved organic carbon. J Water Supply Res. 2012;61(8):494–505. doi: 10.2166/aqua.2012.047.CrossRefGoogle Scholar
  11. 11.
    California Department of Public Health. Drinking water programs, certificates and licenses, 1, 4-dioxane notification level. http://www.waterboardscagov. (accessed 1 December 2016).
  12. 12.
    Fujioka T, Khan SJ, McDonald JA, Roux A, Poussade Y, Drewes JE, et al. N-nitrosamine rejection by reverse osmosis membranes: a full-scale study. Water Res. 2013;47(16):6141–8. doi: 10.1016/j.watres.2013.07.035.CrossRefGoogle Scholar
  13. 13.
    Swaim PDM, Rory; Mueller, Paul; Vorissis, Mary; Erdal, Ufuk; Carter, William. Implementing an effective UV advanced oxidation process. Proceedings of the Water Environment Federation, Disinfection. 2009:678–88. Doi: 10.2175/193864709793847555.
  14. 14.
    Ishida KP, Cooper WJ. Analysis of parameters affecting process efficiency, energy consumption, and carbon footprint in water reuse. Alexandria, VA: WateReuse Research Foundation; 2015.Google Scholar
  15. 15.
    Keen O, Dotson A, Linden K. Evaluation of hydrogen peroxide chemical quenching agents following an advanced oxidation process. J Environ Eng. 2012;139(1):137–40. doi: 10.1061/(ASCE)EE.1943-7870.0000619.CrossRefGoogle Scholar
  16. 16.
    Kruithof JC, Kamp PC, Martijn BJ. UV/H2O2 treatment: a practical solution for organic contaminant control and primary disinfection. Ozone-Sci Eng. 2007;29(4):273–80. doi: 10.1080/01919510701459311.CrossRefGoogle Scholar
  17. 17.
    Stepien DK, Diehl P, Helm J, Thorns A, Puttmann W. Fate of 1,4-dioxane in the aquatic environment: from sewage to drinking water. Water Res. 2014;48:406–19. doi: 10.1016/j.watres.2013.09.057.CrossRefGoogle Scholar
  18. 18.
    Xu B, Chen Z, Qi F, Ma J, Wu F. Inhibiting the regeneration of N-nitrosodimethylamine in drinking water by UV photolysis combined with ozonation. J Hazard Mater. 2009;168(1):108–14. doi: 10.1016/j.jhazmat.2009.02.014.CrossRefGoogle Scholar
  19. 19.
    Lee C, Yoon J, Von Gunten U. Oxidative degradation of N-nitrosodimethylamine by conventional ozonation and the advanced oxidation process ozone/hydrogen peroxide. Water Res. 2007;41(3):581–90. doi: 10.1016/j.watres.2006.10.033.CrossRefGoogle Scholar
  20. 20.
    Pisarenko AN, Stanford BD, Yan D, Gerrity D, Snyder SA. Effects of ozone and ozone/peroxide on trace organic contaminants and NDMA in drinking water and water reuse applications. Water Res. 2012;46(2):316–26. doi: 10.1016/j.watres.2011.10.021.CrossRefGoogle Scholar
  21. 21.
    Deng Y, Ezyske CM. Sulfate radical-advanced oxidation process (SR-AOP) for simultaneous removal of refractory organic contaminants and ammonia in landfill leachate. Water Res. 2011;45(18):6189–94. doi: 10.1016/j.watres.2011.09.015.CrossRefGoogle Scholar
  22. 22.
    Wang Y, Le Roux J, Zhang T, Croué J-P. Formation of brominated disinfection byproducts from natural organic matter isolates and model compounds in a sulfate radical-based oxidation process. Environ Sci Technol. 2014;48(24):14534–42. doi: 10.1021/es503255j.CrossRefGoogle Scholar
  23. 23.
    Watts MJ, Hofmann R, Rosenfeldt EJ. Low-pressure UV/Cl2 for advanced oxidation of taste and odor. Journal of the American Water Works Association (JAWWA). 2012;104(1):58–65. doi: 10.5942/jawwa.2012.104.0006.CrossRefGoogle Scholar
  24. 24.
    • Deng Y, Zhao R. Advanced oxidation processes (AOPs) in wastewater treatment. Current Pollution Reports. 2015;1(3):167–76. doi: 10.1007/s40726-015-0015-z. This article provides an overview of advanced oxidation processes used in wastewater treatment that facilitates understanding of the oxidation theory. CrossRefGoogle Scholar
  25. 25.
    •• Guo X, Li Q, Zhang M, Long M, Kong L, Zhou Q, et al. Enhanced photocatalytic performance of N-nitrosodimethylamine on TiO2 nanotube based on the role of singlet oxygen. Chemosphere. 2015;120:521–6. doi: 10.1016/j.chemosphere.2014.09.002. This article assessed photocatalytic degradation performance of N-nitrosodimethylamine by TiO 2 nanotube. It also identified the role of singlet oxygen as well as hydroxyl radicals during the photocatalytic degradation. CrossRefGoogle Scholar
  26. 26.
    Alvarez-Corena JR, Bergendahl JA, Hart FL. Advanced oxidation of five contaminants in water by UV/TiO2: reaction kinetics and byproducts identification. J Environ Manag. 2016;181:544–51. doi: 10.1016/j.jenvman.2016.07.015.CrossRefGoogle Scholar
  27. 27.
    • Sgroi M, Roccaro P, Oelker GL, Snyder SA. N-nitrosodimethylamine (NDMA) formation at an indirect potable reuse facility. Water Res. 2015;70:174–83. doi: 10.1016/j.watres.2014.11.051. This article focused on NDMA precursors in RO permeate. They identified that NDMA formation during chloramination of the RO permeate. CrossRefGoogle Scholar
  28. 28.
    Shen R, Andrews SA. Demonstration of 20 pharmaceuticals and personal care products (PPCPs) as nitrosamine precursors during chloramine disinfection. Water Res. 2011;45(2):944–52. doi: 10.1016/j.watres.2010.09.036.CrossRefGoogle Scholar
  29. 29.
    Le Roux J, Gallard H, Croué J-P. Chloramination of nitrogenous contaminants (pharmaceuticals and pesticides): NDMA and halogenated DBPs formation. Water Res. 2011;45(10):3164–74. doi: 10.1016/j.watres.2011.03.035.CrossRefGoogle Scholar
  30. 30.
    Mitch WA, Schreiber IM. Degradation of tertiary alkylamines during chlorination/chloramination: implications for formation of aldehydes, nitriles, halonitroalkanes, and nitrosamines. Environ Sci Technol. 2008;42(13):4811–7. doi: 10.1021/es703017z.CrossRefGoogle Scholar
  31. 31.
    Mitch WA, Gerecke AC, Sedlak DL. A N-nitrosodimethylamine (NDMA) precursor analysis for chlorination of water and wastewater. Water Res. 2003;37(15):3733–41. doi: 10.1016/S0043-1354(03)00289-6.CrossRefGoogle Scholar
  32. 32.
    Pehlivanoglu-Mantas E, Hawley EL, Deeb RA, Sedlak DL. Formation of nitrosodimethylamine (NDMA) during chlorine disinfection of wastewater effluents prior to use in irrigation systems. Water Res. 2006;40(2):341–7. doi: 10.1016/j.watres.2005.11.012.CrossRefGoogle Scholar
  33. 33.
    Schreiber IM, Mitch WA. Influence of the order of reagent addition on NDMA formation during chloramination. Environ Sci Technol. 2005;39(10):3811–8. doi: 10.1021/es0483286.CrossRefGoogle Scholar
  34. 34.
    Soltermann F, Lee M, Canonica S, von Gunten U. Enhanced N-nitrosamine formation in pool water by UV irradiation of chlorinated secondary amines in the presence of monochloramine. Water Res. 2013;47(1):79–90. doi: 10.1016/j.watres.2012.09.034.CrossRefGoogle Scholar
  35. 35.
    Poussade Y, Roux A, Walker T, Zavlanos V. Advanced oxidation for indirect potable reuse: a practical application in Australia. Water Sci Technol. 2009;60(9):2419–24. doi: 10.2166/wst.2009.665.CrossRefGoogle Scholar
  36. 36.
    Drewes JE, Khan SJ. Chapter 16: Water reuse for drinking water augmentation. In: Edzwald JK, editor. Water quality & treatment: a handbook on drinking water. 6th ed. New York: McGraw-Hill; 2011. p. 16.1–16.48.Google Scholar
  37. 37.
    Plumlee M, López Mesas M, Heidlberger A, Ishida K, Reinhard M. N-nitrosodimethylamine (NDMA) removal by reverse osmosis and UV treatment and analysis via LC–MS/MS. Water Res. 2008;42(1–2):347–55. doi: 10.1016/j.watres.2007.07.022.CrossRefGoogle Scholar
  38. 38.
    Yangali-Quintanilla V, Maeng SK, Fujioka T, Kennedy M, Amy G. Proposing nanofiltration as acceptable barrier for organic contaminants in water reuse. J Membr Sci. 2010;362(1–2):334–45. doi: 10.1016/j.memsci.2010.06.058.CrossRefGoogle Scholar
  39. 39.
    USEPA. 1,4-Dioxane (CASRN 123–91-1) (Accessed December 16, 2016)1993.Google Scholar
  40. 40.
    Nawrocki J, Andrzejewski P. Nitrosamines and water. J Hazard Mater. 2011;189(1–2):1–18. doi: 10.1016/j.jhazmat.2011.02.005.CrossRefGoogle Scholar
  41. 41.
    Sedlak D, Kavanaugh M. Removal and destruction of NDMA and NDMA precursors during wastewater treatment. WateReuse Foundation; 2006.Google Scholar
  42. 42.
    Krauss M, Longrée P, Dorusch F, Ort C, Hollender J. Occurrence and removal of N-nitrosamines in wastewater treatment plants. Water Res. 2009;43(17):4381–91. doi: 10.1016/j.watres.2009.06.048.CrossRefGoogle Scholar
  43. 43.
    Krasner SW, Mitch WA, McCurry DL, Hanigan D, Westerhoff P. Formation, precursors, control, and occurrence of nitrosamines in drinking water: a review. Water Res. 2013;47(13):4433–50. doi: 10.1016/j.watres.2013.04.050.CrossRefGoogle Scholar
  44. 44.
    Yoon S, Nakada N, Tanaka H. Occurrence and removal of NDMA and NDMA formation potential in wastewater treatment plants. J Hazard Mater. 2011;190(1–3):897–902. doi: 10.1016/j.jhazmat.2011.04.010.CrossRefGoogle Scholar
  45. 45.
    Andrzejewski P, Kasprzyk-Hordern B, Nawrocki J. N-nitrosodimethylamine (NDMA) formation during ozonation of dimethylamine-containing waters. Water Res. 2008;42(4–5):863–70. doi: 10.1016/j.watres.2007.08.032.CrossRefGoogle Scholar
  46. 46.
    Schreiber IM, Mitch WA. Nitrosamine formation pathway revisited: the importance of chloramine speciation and dissolved oxygen. Environ Sci Technol. 2006;40(19):6007–14. doi: 10.1021/es060978h.CrossRefGoogle Scholar
  47. 47.
    Farré MJ, Keller J, Holling N, Poussade Y, Gernjak W. Occurrence of N-nitrosodimethylamine precursors in wastewater treatment plant effluent and their fate during ultrafiltration-reverse osmosis membrane treatment. Water Sci Technol. 2011;63(4):605–12. doi: 10.2166/wst.2011.207.CrossRefGoogle Scholar
  48. 48.
    Lee C, Choi W, Yoon J. UV photolytic mechanism of N-nitrosodimethylamine in water: roles of dissolved oxygen and solution pH. Environ Sci Technol. 2005;39(24):9702–9. doi: 10.1021/es051235j.CrossRefGoogle Scholar
  49. 49.
    Sharpless C, Linden K. Experimental and model comparisons of low- and medium-pressure Hg lamps for the direct and H2O2 assisted UV photodegradation of N-nitrosodimethylamine in simulated drinking water. Environ Sci Technol. 2003;37(9):1933–40. doi: 10.1021/es025814p.CrossRefGoogle Scholar
  50. 50.
    Stefan M, Bolton J. UV direct photolysis of N-nitrosodimethylamine (NDMA): kinetic and product study. Helv Chim Acta. 2002;85(5):1416–26. doi: 10.1002/1522-2675(200205)85:5<1416::AID-HLCA1416>3.0.CO;2-I.CrossRefGoogle Scholar
  51. 51.
    Lee C, Choi W, Kim Y, Yoon J. UV photolytic mechanism of N-nitrosodimethylamine in water: dual pathways to methylamine versus dimethylamine. Environ Sci Technol. 2005;39(7):2101–6. doi: 10.1021/es0488941.CrossRefGoogle Scholar
  52. 52.
    Chow YL, Lau MP, Perry RA, Tam JNS. Photoreactions of nitroso compounds in solution. XX. Photoreduction, photoelimination, and photoaddition of nitrosamines. Can J Chem. 1972;50(7):1044–50. doi: 10.1139/v72-164.CrossRefGoogle Scholar
  53. 53.
    Plumlee MH, Reinhard M. Photochemical attenuation of N-nitrosodimethylamine (NDMA) and other nitrosamines in surface water. Environ Sci Technol. 2007;41(17):6170–6. doi: 10.1021/es070818l.CrossRefGoogle Scholar
  54. 54.
    Zhou C, Gao N, Deng Y, Chu W, Rong W, Zhou S. Factors affecting ultraviolet irradiation/hydrogen peroxide (UV/H2O2) degradation of mixed N-nitrosamines in water. J Hazard Mater. 2012;231–232:43–8. doi: 10.1016/j.jhazmat.2012.06.032.CrossRefGoogle Scholar
  55. 55.
    Xu B, Chen Z, Qi F, Shen J, Wu F. Factors influencing the photodegradation of N-nitrosodimethylamine in drinking water. Front Environ Sci Eng China. 2009;3(1):91–7. doi: 10.1007/s11783-009-0013-8.CrossRefGoogle Scholar
  56. 56.
    Lekkerkerker-Teunissen K, Knol AH, Derks JG, Heringa MB, Houtman CJ, Hofman-Caris CHM, et al. Pilot plant results with three different types of UV lamps for advanced oxidation. Ozone-Sci Eng. 2013;35(1):38–48. doi: 10.1080/01919512.2013.721317.CrossRefGoogle Scholar
  57. 57.
    Sakai H, Kosaka K, Takizawa S. Degradation of N-nitrosodimethylamine by mercury-free excimer UV lamps. Environ Eng Sci. 2016;33(5):341–6. doi: 10.1089/ees.2015.0328.CrossRefGoogle Scholar
  58. 58.
    Sakai H, Takamatsu T, Kosaka K, Kamiko N, Takizawa S. Effects of wavelength and water quality on photodegradation of N-nitrosodimethylamine (NDMA). Chemosphere. 2012;89(6):702–7. doi: 10.1016/j.chemosphere.2012.06.025.CrossRefGoogle Scholar
  59. 59.
    Zhang J-Y, Boyd IW. Lifetime investigation of excimer UV sources. Appl Surf Sci. 2000;168(1–4):296–9. doi: 10.1016/S0169-4332(00)00628-0.CrossRefGoogle Scholar
  60. 60.
    Goldstein S, Aschengrau D, Diamant Y, Rabani J. Photolysis of aqueous H2O2: quantum yield and applications for polychromatic UV actinometry in photoreactors. Environ Sci Technol. 2007;41(21):7486–90. doi: 10.1021/es071379t.CrossRefGoogle Scholar
  61. 61.
    Collins J, Bolton JR. Advanced oxidation handbook. American Water Works Association; 2016.Google Scholar
  62. 62.
    Mezyk S, Cooper W, Madden K, Bartels D. Free radical destruction of N-nitrosodimethylamine in water. Environ Sci Technol. 2004;38(11):3161–7. doi: 10.1021/es0347742.CrossRefGoogle Scholar
  63. 63.
    Mezyk SP, Ewing DB, Kiddle JJ, Madden KP. Kinetics and mechanisms of the reactions of hydroxyl radicals and hydrated electrons with nitrosamines and nitramines in water. J Phys Chem A. 2006;110(14):4732–7. doi: 10.1021/jp056017r.CrossRefGoogle Scholar
  64. 64.
    Landsman NA, Swancutt KL, Bradford CN, Cox CR, Kiddle JJ, Mezyk SP. Free radical chemistry of advanced oxidation process removal of nitrosamines in water. Environ Sci Technol. 2007;41(16):5818–23. doi: 10.1021/es070275f.CrossRefGoogle Scholar
  65. 65.
    Wols BA, Hofman-Caris CHM. Review of photochemical reaction constants of organic micropollutants required for UV advanced oxidation processes in water. Water Res. 2012;46(9):2815–27. doi: 10.1016/j.watres.2012.03.036.CrossRefGoogle Scholar
  66. 66.
    Muruganandham M, Swaminathan M. Photochemical oxidation of reactive azo dye with UV–H2O2 process. Dyes Pigments. 2004;62(3):269–75. doi: 10.1016/j.dyepig.2003.12.006.CrossRefGoogle Scholar
  67. 67.
    Yang Y, Pignatello JJ, Ma J, Mitch WA. Effect of matrix components on UV/H2O2 and UV/S2O8 2− advanced oxidation processes for trace organic degradation in reverse osmosis brines from municipal wastewater reuse facilities. Water Res. 2016;89:192–200. doi: 10.1016/j.watres.2015.11.049.CrossRefGoogle Scholar
  68. 68.
    Chong MN, Jin B, Chow CWK, Saint C. Recent developments in photocatalytic water treatment technology: a review. Water Res. 2010;44(10):2997–3027. doi: 10.1016/j.watres.2010.02.039.CrossRefGoogle Scholar
  69. 69.
    Park H, Choi W. Effects of TiO2 surface fluorination on photocatalytic reactions and photoelectrochemical behaviors. J Phys Chem B. 2004;108(13):4086–93. doi: 10.1021/jp036735i.CrossRefGoogle Scholar
  70. 70.
    Lazar M, Varghese S, Nair S. Photocatalytic water treatment by titanium dioxide: recent updates. Catalysts. 2012;2(4):572. doi: 10.3390/catal2040572.CrossRefGoogle Scholar
  71. 71.
    Zhang D, Qiu R, Song L, Eric B, Mo Y, Huang X. Role of oxygen active species in the photocatalytic degradation of phenol using polymer sensitized TiO2 under visible light irradiation. J Hazard Mater. 2009;163(2–3):843–7. doi: 10.1016/j.jhazmat.2008.07.036.CrossRefGoogle Scholar
  72. 72.
    Daimon T, Nosaka Y. Formation and behavior of singlet molecular oxygen in TiO2 photocatalysis studied by detection of near-infrared phosphorescence. J Phys Chem C. 2007;111(11):4420–4. doi: 10.1021/jp070028y.CrossRefGoogle Scholar
  73. 73.
    Atlante A, Passarella S. Detection of reactive oxygen species in primary cultures of cerebellar granule cells. Brain Res Protocol. 1999;4(3):266–70. doi: 10.1016/S1385-299X(99)00028-8.CrossRefGoogle Scholar
  74. 74.
    Lee J, Choi W, Yoon J. Photocatalytic degradation of N-nitrosodimethylamine: a mechanism, product distribution, and TiO2 surface modification. Environ Sci Technol. 2005;39(17):6800–7. doi: 10.1021/es0481777.CrossRefGoogle Scholar
  75. 75.
    Maillard B, Ingold KU, Scaiano JC. Rate constants for the reactions of free radicals with oxygen in solution. J Am Chem Soc. 1983;105(15):5095–9. doi: 10.1021/ja00353a039.CrossRefGoogle Scholar
  76. 76.
    Alfassi ZB, Mosseri S, Neta P. Halogenated alkylperoxyl radicals as oxidants: effects of solvents and of substituents on rates of electron transfer. J Phys Chem. 1987;91(12):3383–5. doi: 10.1021/j100296a056.CrossRefGoogle Scholar
  77. 77.
    • Guo X, Shao H, Kong L, Long M, Zhang M, Zhou Q, et al. Probing the effect of nanotubes on N-nitrosodimethylamine photocatalytic degradation efficiency and reaction pathway. Chem Eng Sci. 2016;144:1–6. doi: 10.1016/j.ces.2016.01.018. This article evaluated the effects of modification of TiO 2 nanotube on the photocatalytic degradation of N-nitrosodimethylamine and identified dimethylamine as a major by-product. CrossRefGoogle Scholar
  78. 78.
    Wink D, Desrosiers M. Unusual spin-trap chemistry for the reaction of hydroxyl radical with the carcinogen N-nitrosodimethylamine. International Journal of Radiation Applications and Instrumentation Part C. 1991;38(5):467–72. doi: 10.1016/1359-0197(91)90063-8.CrossRefGoogle Scholar
  79. 79.
    Helali S, Puzenat E, Perol N, Safi M-J, Guillard C. Methylamine and dimethylamine photocatalytic degradation—adsorption isotherms and kinetics. Appl Catal A Gen. 2011;402(1–2):201–7. doi: 10.1016/j.apcata.2011.06.004.CrossRefGoogle Scholar
  80. 80.
    Daimon T, Hirakawa T, Kitazawa M, Suetake J, Nosaka Y. Formation of singlet molecular oxygen associated with the formation of superoxide radicals in aqueous suspensions of TiO2 photocatalysts. Appl Catal A Gen. 2008;340(2):169–75. doi: 10.1016/j.apcata.2008.02.012.CrossRefGoogle Scholar
  81. 81.
    Hirakawa T, Yawata K, Nosaka Y. Photocatalytic reactivity for O2 and OH radical formation in anatase and rutile TiO2 suspension as the effect of H2O2 addition. Appl Catal A Gen. 2007;325(1):105–11. doi: 10.1016/j.apcata.2007.03.015.CrossRefGoogle Scholar
  82. 82.
    Henderson MA. A surface science perspective on photocatalysis. Surf Sci Rep. 2011;66(6–7):185–297. doi: 10.1016/j.surfrep.2011.01.001.CrossRefGoogle Scholar
  83. 83.
    Pelaez M, Nolan NT, Pillai SC, Seery MK, Falaras P, Kontos AG, et al. A review on the visible light active titanium dioxide photocatalysts for environmental applications. Appl Catal B Environ. 2012;125:331–49. doi: 10.1016/j.apcatb.2012.05.036.CrossRefGoogle Scholar
  84. 84.
    Fagan R, McCormack DE, Dionysiou DD, Pillai SC. A review of solar and visible light active TiO2 photocatalysis for treating bacteria, cyanotoxins and contaminants of emerging concern. Mater Sci Semicond Process. 2016;42(Part 1):2–14. doi: 10.1016/j.mssp.2015.07.052.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Water and Environmental Engineering, Graduate School of EngineeringNagasaki UniversityNagasakiJapan
  2. 2.Division of Earth and Environmental Science, Graduate School of Science and EngineeringKagoshima UniversityKagoshimaJapan
  3. 3.Pacific Advanced Civil Engineering, Inc.Fountain ValleyUSA

Personalised recommendations