Advertisement

Current Forestry Reports

, Volume 4, Issue 1, pp 23–34 | Cite as

Advances in Silviculture of Intensively Managed Plantations

  • Rafael A. Rubilar
  • H. Lee Allen
  • Thomas R. Fox
  • Rachel L. Cook
  • Timothy J. Albaugh
  • Otávio C. Campoe
Forest Management (H Vacik, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Forest Management

Abstract

Purpose of Review

Intensive management of forest plantations has evolved significantly in recent decades because of advances in our understanding of environmental and silvicultural effects on forest productivity combined with improvements in information technologies. Our paper summarizes concepts that provide a basis for making strategic and operational silvicultural decisions that insure sustainability when applying intensive management of forest plantations. In addition, we include new information in areas where there are knowledge gaps in forest plantation management.

Recent Findings

Intensive management of forest plantations increasingly incorporates large-scale precision silviculture to estimate silvicultural, biotic, and abiotic effects on site-specific forest productivity. Remote sensing measurements combined with strategically located ground information provide spatial modeling tools needed for this type of silviculture. Long-term field experiments, which are a part of this methodology, provide a mechanistic understanding of environmental and silvicultural effects on forest production that is required for the models driving silvicultural decisions. The focus on maximizing production will challenge scientific efforts to alleviate concerns about intensive land use and to provide solutions for water use conflicts while maintaining long-term productivity and sustainability. Future work will need to develop a better understanding of genetic × environment × silvicultural (G × E × S) interactions to improve productivity and simultaneously provide improved ecosystem services.

Summary

New silviculture technology combines remote sensing information with ground data to model resource availability and limitations to forest productivity. Understanding G × E × S permits successful implementation of these new silvicultural technologies. An improved understanding of G × E × S will provide practical tools that may be incorporated into our scientific and technical models while providing robust economic sustainability.

Keywords

Forest management Intensive silviculture Potential productivity Silviculture technology Forest sustainability Genetic and environment interaction 

Notes

Compliance with Ethical Standards

Conflict of Interest

Dr. Rubilar, Dr. Allen, Dr. Fox, Dr. Cook, and Dr. Campoe have nothing to disclose.

Dr. Albaugh states that the Forest Productivity Cooperative supported this effort.

References

Papers of particular interest, published recently, have been highlighted as: •Of importance •• Of major importance

  1. 1.
    Stone EI. Soil and man’s use of forest land. In: Bernier, B, Winget, CH (Eds), Forest soils and forest land management. Proceeedings of the Fourth North American Forest Soils Conference, Les Presses de LÚniversite Laval, Quebec. 1975:1–9.Google Scholar
  2. 2.
    Powers RF. On the sustainable productivity of planted forests. New For. 1999;17(1–3):263–306.  https://doi.org/10.1023/A:1006555219130.CrossRefGoogle Scholar
  3. 3.
    Fox TR, Allen HL, Albaugh TJ, Rubilar R, Carlson CA. Tree nutrition and forest fertilization of pine plantations in the southern United States. South J Appl For. 2007;31(1):5–11.Google Scholar
  4. 4.
    Allen HL, Fox TR, Campbell RG. What is ahead for intensive pine plantation silviculture in the south? South J Appl For. 2005;29(2):62–9.Google Scholar
  5. 5.
    Allen HL, Albaugh TJ. Ecophysiological basis for plantation production: a loblolly pine case study. Bosque. 1999;20(1):3–8.CrossRefGoogle Scholar
  6. 6.
    Ryan PJ. Characterization of soil and productivity of Pinus radiata (D Don) in New South Wales.2. Pedogenesis on a range of parent materials. Aust J Soil Res. 1986;24(1):103–13.  https://doi.org/10.1071/SR9860103.CrossRefGoogle Scholar
  7. 7.
    Grey DC. A site-growth study of Pinus radiata in the Southern Cape. South Afr For J. 1989;140:60–6.Google Scholar
  8. 8.
    Flores FJ, Allen HL. Efectos del clima y capacidad de almacenamiento de agua del suelo en la productividad de rodales de pino radiata en Chile: un analisis utilizando el modelo 3-PG. Bosque. 2004;25(3):11–24.CrossRefGoogle Scholar
  9. 9.
    Harper RJ, Smettem KRJ, Carter JO, McGrath JF. Drought deaths in Eucalyptus globulus (Labill.) plantations in relation to soils, geomorphology and climate. Plant Soil. 2009;324(1–2):199–207.  https://doi.org/10.1007/s11104-009-9944-x.CrossRefGoogle Scholar
  10. 10.
    Coops NC, Waring RH, Landsberg JJ. Assessing forest productivity in Australia and New Zealand using a physiologically-based model driven with averaged monthly weather data and satellite-derived estimates of canopy photosynthetic capacity. For Ecol Manag. 1998;104(1–3):113–27.  https://doi.org/10.1016/S0378-1127(97)00248-X.CrossRefGoogle Scholar
  11. 11.
    Aber JD, Freuder R. Variation among solar radiation data sets for the Eastern US and its effects on predictions of forest production and water yield. Clim Res. 2000;15(1):33–43.  https://doi.org/10.3354/cr015033.CrossRefGoogle Scholar
  12. 12.
    Landsberg JJ, Waring RH. A generalised model of forest productivity using simplified concepts of radiation-use efficiency, carbon balance and partitioning. For Ecol Manag. 1997;95(3):209–28.  https://doi.org/10.1016/S0378-1127(97)00026-1.CrossRefGoogle Scholar
  13. 13.
    Hakamada RE, Stape JL, de Lemos CCZ, Almeida AEA, Silva LF. Using forest inventory and uniformity among trees to monitor silvicultural quality in Eucalyptus clonal plantations. Sci For. 2015;43(105):27–36.Google Scholar
  14. 14.
    • Watt MS, Dash JP, Watt P, Bhandari S. Multi-sensor modelling of a forest productivity index for radiata pine plantations. N Z J For Sci. 2016;46. This paper presents an interesting combination of high resolution imagery and LIDAR remote sensing tools with environmental data to predict spatial variablity of forest productivity in intensively managed plantations.Google Scholar
  15. 15.
    White DA, Crombie DS, Kinal J, Battaglia M, McGrath JF, Mendharn DS, et al. Managing productivity and drought risk in Eucalyptus globulus plantations in south-western Australia. For Ecol Manag. 2009;259(1):33–44.  https://doi.org/10.1016/j.foreco.2009.09.039.CrossRefGoogle Scholar
  16. 16.
    Watt MS, Rubilar R, Kimberley MO, Kriticos DJ, Emhart V, Mardones O, et al. Using seasonal measurements to inform ecophysiology: extracting cardinal growth temperatures for process-based growth models of five Eucalyptus species/crosses from simple field trials. N Z J For Sci. 2014;44(1)  https://doi.org/10.1186/s40490-014-0009-4.
  17. 17.
    Boreham GR, Pallett RN. The influence of tree improvement and cultural practices on the productivity of Eucalyptus plantations in temperate South Africa. South Forests. 2009;71(2):85–93.  https://doi.org/10.2989/SF.2009.71.2.1.816.CrossRefGoogle Scholar
  18. 18.
    Miehle P, Battaglia M, Sands PJ, Forrester DI, Feikema PM, Livesley SJ, et al. A comparison of four process-based models and a statistical regression model to predict growth of Eucalyptus globulus plantations. Ecol Model. 2009;220(5):734–46.  https://doi.org/10.1016/j.ecolmodel.2008.12.010.CrossRefGoogle Scholar
  19. 19.
    Nunes FN, Barros NF, de Novais RF, da Silva IR, Stape JL. Carbon isotope discrimination and differential drought tolerance in eucalypt clones. Sci For. 2016;44(112):895–903.CrossRefGoogle Scholar
  20. 20.
    Beltrame R, Bisognin DA, Mattos BD, Cargnelutti A, Haselein CR, Gatto DA, et al. Silvicultural performance and early selection of clones from eucalyptus hybrids. Pesq Agrop Bras. 2012;47(6):791–6.  https://doi.org/10.1590/S0100-204X2012000600009.CrossRefGoogle Scholar
  21. 21.
    Pinheiro RC, de Deus JC, Nouvellon Y, Campoe OC, Stape JL, Alo LL, et al. A fast exploration of very deep soil layers by Eucalyptus seedlings and clones in Brazil. For Ecol Manag. 2016;366:143–52.  https://doi.org/10.1016/j.foreco.2016.02.012.CrossRefGoogle Scholar
  22. 22.
    Navarrete-Campos D, Bravo LA, Rubilar RA, Emhart V, Sanhueza R. Drought effects on water use efficiency, freezing tolerance and survival of Eucalyptus globulus and Eucalyptus globulus × nitens cuttings. New For. 2013;44(1):119–34.  https://doi.org/10.1007/s11056-012-9305-0.CrossRefGoogle Scholar
  23. 23.
    Hodge GR, Dvorak WS, Tighe ME. Comparisons between laboratory and field results of frost tolerance of pines from the southern USA and Mesoamerica planted as exotics. South For. 2012;74(1):7–17.  https://doi.org/10.2989/20702620.2012.683637.Google Scholar
  24. 24.
    de Almeida NF, Bortoletto G, Mendes RF, Surdi PG. Evaluation of Pinus elliottii var. elliottii × Pinus caribaea var. hondurensis wood for plywood production. Sci For. 2012;40(96):435–43.Google Scholar
  25. 25.
    Zeng SC, Jacobs DF, Sloan JL, Xue L, Li Y, Chu SS. Split fertilizer application affects growth, biomass allocation, and fertilizer uptake efficiency of hybrid Eucalyptus. New For. 2013;44(5):703–18.  https://doi.org/10.1007/s11056-013-9371-y.CrossRefGoogle Scholar
  26. 26.
    Dvorak WS. Water use in plantations of eucalypts and pines: a discussion paper from a tree breeding perspective. Int For Rev. 2012;14(1):110–9.  https://doi.org/10.1505/146554812799973118.Google Scholar
  27. 27.
    •• Amateis RL, Burkhart HE. Relating quantity, quality, and value of lumber to planting density for loblolly pine plantations. South J Appl For. 2013;37(2):97–101. This paper summarizes the long term effects of different spacing treatments providing strong inference on final value of planted forests showing key questions on adjusting site occupancy and economics.  https://doi.org/10.5849/sjaf.12-012.CrossRefGoogle Scholar
  28. 28.
    Albaugh T, Fox T, Rubilar R, Cook R, Amateis RL, H.B. Post-thinning density and fertilization affect Pinus taeda stand and individual tree growth. For Ecol Manag. 2017 (in publication).Google Scholar
  29. 29.
    Carson SD, Cown DJ, RB MK, Moore JR. Effects of site, silviculture and seedlot on wood density and estimated wood stiffness in radiata pine at mid-rotation. N Z J For Sci. 2014;44:1–12.CrossRefGoogle Scholar
  30. 30.
    Haywood JD. Influence Of precommercial thinning and fertilization on total stem volume and lower stem form of loblolly pine. South J Appl For. 2005;29(4):215–20.Google Scholar
  31. 31.
    Martiarena R, Crechi E, Pinazo M, Von Wallis A, Marquina J, Monteoliva S. Effect of thinning treatment on growth and wood density of Pinus taeda planted in Misiones. Argentina Cienc Flor. 2014;24(3):655–63.Google Scholar
  32. 32.
    Smith RGB, Glencross K, Nichols JD, Palmer G, Viranamangga R. Effect of initial spacing on first thinning product recovery, and financial outcomes in whitewood (Endospermum medullosum) plantations in Vanuatu. Small-Scale For. 2016;15(1):45–59.  https://doi.org/10.1007/s11842-015-9307-9.CrossRefGoogle Scholar
  33. 33.
    Schneider PR, Finger CAG, Schneider PSP, Fleig FD, da Cunha TA. Influence of spacing on self-thinning of a monoclonal stand of Eucalyptus saligna Smith. Cienc Flor. 2015;25(1):119–26.Google Scholar
  34. 34.
    Battaglia M, Sands PJ, Candy SG. Hybrid growth model to predict height and volume growth in young Eucalyptus globulus plantations. For Ecol Manag. 1999;120(1–3):193–201.  https://doi.org/10.1016/S0378-1127(98)00548-9.CrossRefGoogle Scholar
  35. 35.
    Landsberg JJ, Johnsen KH, Albaugh TJ, Allen HL, SE MK. Applying 3-PG, a simple process-based model designed to produce practical results, to data from loblolly pine experiments. For Sci. 2001;47(1):43–51.Google Scholar
  36. 36.
    le Maire G, Marsden C, Verhoef W, Ponzoni FJ, Lo Seen D, Begue A, et al. Leaf area index estimation with MODIS reflectance time series and model inversion during full rotations of Eucalyptus plantations. Remote Sens Environ. 2011;115(2):586–99.  https://doi.org/10.1016/j.rse.2010.10.004.CrossRefGoogle Scholar
  37. 37.
    • Sumnall MJ, Fox TR, Wynne RH, Blinn C, Thomas VA. Estimating leaf area index at multiple heights within the understorey component of Loblolly pine forests from airborne discrete-return lidar. Int J Remote Sens. 2016;37(1):78–99. This paper shows the potential of LIDAR technologies for LAI estimation and its promising value for assessing competition, pruning and stand quality.CrossRefGoogle Scholar
  38. 38.
    Marselis SM, Yebra M, Jovanovic T, van Dijk AIJM. Deriving comprehensive forest structure information from mobile laser scanning observations using automated point cloud classification. Environ Model Softw. 2016;82:142–51.  https://doi.org/10.1016/j.envsoft.2016.04.025.CrossRefGoogle Scholar
  39. 39.
    Silva CA, Klauberg C, Hudak AT, Vierling LA, Liesenberg V, Carvalho SPCE, et al. A principal component approach for predicting the stem volume in Eucalyptus plantations in Brazil using airborne LiDAR data. Forestry. 2016;89(4):422–33.  https://doi.org/10.1093/forestry/cpw016.CrossRefGoogle Scholar
  40. 40.
    Wang YS, Hyyppa J, Liang XL, Kaartinen H, Yu XW, Lindberg E, et al. International benchmarking of the individual tree detection methods for modeling 3-D canopy structure for silviculture and forest ecology using airborne laser scanning. Ieee T Geosci Remote. 2016;54(9):5011–27.  https://doi.org/10.1109/TGRS.2016.2543225.CrossRefGoogle Scholar
  41. 41.
    Sharma RK, Mason EG, Sorensson CT. Productivity of radiata pine (Pinus radiata D. Don.) clones in monoclonal and clonal mixture plots at age 12 years. For Ecol Manag. 2008;255(1):140–8.  https://doi.org/10.1016/j.foreco.2007.08.033.CrossRefGoogle Scholar
  42. 42.
    Peng Y, Washusen R, Xiang DY, Lan J, Chen SX, Arnold R. Grade and value variations in Eucalyptus urophylla × E. grandis veneer due to variations in initial plantation spacings. Aust For. 2014;77(1):39–50.  https://doi.org/10.1080/00049158.2013.877415.CrossRefGoogle Scholar
  43. 43.
    Beauregard RL, Gazo R, Ball RD. Grade recovery, value, and return-to-log for the production of NZ visual grades (cuttings and framing) and Australian machine stress grades. Wood Fiber Sci. 2002;34(3):485–502.Google Scholar
  44. 44.
    Lasserre JP, Mason EG, Watt MS, Moore JR. Influence of initial planting spacing and genotype on microfibril angle, wood density, fibre properties and modulus of elasticity in Pinus radiata D. Don corewood. For Ecol Manag. 2009;258(9):1924–31.  https://doi.org/10.1016/j.foreco.2009.07.028.CrossRefGoogle Scholar
  45. 45.
    • Hawthorne SND, Lane PNJ, Bren LJ, Sims NC. The long term effects of thinning treatments on vegetation structure and water yield. For Ecol Manag. 2013;310:983–93. Long-term research paper monitoring the effect of a gradient of thinning regimes on water production and how changes in forest canopy can be monitored using remote sensing technologies and modeled on water supply. CrossRefGoogle Scholar
  46. 46.
    •• Battaglia M, Sands P, White D, Mummery D. CABALA: a linked carbon, water and nitrogen model of forest growth for silvicultural decision support. Forest Ecol Manag. 2004;193(1–2):251–82. This paper presents the use of the advanced CABALA process based model and its potential use in silvicultural direction and forest research.CrossRefGoogle Scholar
  47. 47.
    • Moore JR, Cown DJ. Corewood (juvenile wood) and its impact on wood utilisation. Curr for Rep. 2017;3(2):107–18. This paper reviews how different factors affect juvenile wood and its critical effects on wood quality and final products and provides evidence of how increasing productivity may affect wood quality.Google Scholar
  48. 48.
    Pezzutti R. Efeitos biológicos e económicos de tratamentos silviculturais em plantios de Pinus taeda L. no Nordeste Argentino. PhD Thesis Universidad Federal de Santa Maria, Centro de Ciencias Rurais, Programa de Pos-Graduacao em Engenharia Florestal. 2011:179 pages.Google Scholar
  49. 49.
    Landsberg J. Modelling forest ecosystems: state of the art, challenges, and future directions. Can J For Res. 2003;33(3):385–97.  https://doi.org/10.1139/x02-129.CrossRefGoogle Scholar
  50. 50.
    Huang N, Niu Z, Wu CY, Tappert MC. Modeling net primary production of a fast-growing forest using a light use efficiency model. Ecol Model. 2010;221(24):2938–48.  https://doi.org/10.1016/j.ecolmodel.2010.08.041.CrossRefGoogle Scholar
  51. 51.
    Gonzalez-Ferreiro E, Miranda D, Barreiro-Fernandez L, Bujan S, Garcia-Gutierrez J, Dieguez-Aranda U. Modelling stand biomass fractions in Galician Eucalyptus globulus plantations by use of different LiDAR pulse densities. For Syst. 2013;22(3):510–25.  https://doi.org/10.5424/fs/2013223-03878.Google Scholar
  52. 52.
    Dye P, Jacobs S. Predicting the water use and growth of Eucalyptus trees in Zululand. 2003 Water Wheel 2003; 2(2):18–21.Google Scholar
  53. 53.
    de Oliveira LT, Ferreira MZ, de Carvalho LMT, Ferraz AC, Oliveira TCD, Silveira EMD, et al. Determining timber volume of eucalyptus stands by airborne laser scanning. Pesq Agrop Bras. 2014;49(9):692–9.  https://doi.org/10.1590/S0100-204X2014000900005.CrossRefGoogle Scholar
  54. 54.
    Adams T, Beets P, Parrish C. Extracting more data from LiDAR in forested areas by analyzing waveform shape. Remote Sens-Basel. 2012;4(3):682–702.  https://doi.org/10.3390/rs4030682.CrossRefGoogle Scholar
  55. 55.
    Álvarez J, Allen H, Albaugh T, Stape J, Bullock B, Song C. Factors influencing the growth of radiata pine plantations in Chile. Forestry. 2013;86(1):13–26.  https://doi.org/10.1093/forestry/cps072.CrossRefGoogle Scholar
  56. 56.
    Carlson CA, Fox TR, Colbert SR, Kelting DL, Allen HL, Albaugh TJ. Growth and survival of Pinus taeda in response to surface and subsurface tillage in the southeastern United States. For Ecol Manag. 2006;234(1–3):209–17.  https://doi.org/10.1016/j.foreco.2006.07.002.CrossRefGoogle Scholar
  57. 57.
    • Morris LA, Ludovici KH, Torreano SJ, Carter EA, Lincoln MC, Will RE. An approach for using general soil physical condition-root growth relationships to predict seedling growth response to site preparation tillage in loblolly pine plantations. Forest Ecol Manag. 2006;227(1–2):169–77. The paper models water, resistance and aeration soil factors and their interaction that are key to technical decisions for soil preparation and also the effects of removing these limiting factors on early seedling growth.CrossRefGoogle Scholar
  58. 58.
    Pikul JL, Aase JK. Water infiltration and storage affected by subsoiling and subsequent tillage. Soil Sci Soc Am J. 2003;67(3):859–66.  https://doi.org/10.2136/sssaj2003.0859.CrossRefGoogle Scholar
  59. 59.
    Lincoln MC, Will RE, Morris LA, Carter EA, Markewitz D, Britt JR, et al. Soil change and loblolly pine (Pinus taeda) seedling growth following site preparation tillage in the Upper Coastal Plain of the southeastern United States. For Ecol Manag. 2007;242(2–3):558–68.  https://doi.org/10.1016/j.foreco.2007.01.069.CrossRefGoogle Scholar
  60. 60.
    Rubilar RA, Albaugh TJ, Allen HL, Alvarez J, Fox TR, Stape JL. Influences of silvicultural manipulations on above- and belowground biomass accumulations and leaf area in young Pinus radiata plantations, at three contrasting sites in Chile. Forestry. 2013;86(1):27–38.  https://doi.org/10.1093/forestry/cps055.CrossRefGoogle Scholar
  61. 61.
    Morris LA, Lowery RF. Influence of site preparation on soil conditions affecting stand establishment and tree growth. 1988. South J App For. 1988;12:3.Google Scholar
  62. 62.
    Albaugh TJ, Rubilar RA, Alvarez J, Allen HL. Radiata pine response to tillage, fertilization and weed control in Chile. Bosque. 2004;25(2):5–15.CrossRefGoogle Scholar
  63. 63.
    •• Goncalves JLM, Stape JL, Laclau JP, Bouillet JP, Ranger J. Assessing the effects of early silvicultural management on long-term site productivity of fast-growing eucalypt plantations: the Brazilian experience. South Forests. 2008;70(2):105–18. This paper exposes the relative importance of genetics and silviculture examining sites with specific limitations and the implications in productivity and sustainability.CrossRefGoogle Scholar
  64. 64.
    daSilva AP, Kay BD. Effect of soil water content variation on the least limiting water range. Soil Sci Soc Am J. 1997;61(3):884–8.  https://doi.org/10.2136/sssaj1997.03615995006100030024x.CrossRefGoogle Scholar
  65. 65.
    Raper RL, Sharma AK. Soil moisture effects on energy requirements and soil disruption of subsoiling a coastal plain soil. T Asae. 2004;47(6):1899–905.  https://doi.org/10.13031/2013.17799.CrossRefGoogle Scholar
  66. 66.
    Kay BD, Hajabbasi MA, Ying J, Tollenaar M. Optimum versus non-limiting water contents for root growth, biomass accumulation, gas exchange and the rate of development of maize (Zea mays L.). Soil Till Res. 2006;88(1–2):42–54.  https://doi.org/10.1016/j.still.2005.04.005.CrossRefGoogle Scholar
  67. 67.
    Lacey ST, Ryan PJ. Cumulative management impacts on soil physical properties and early growth of Pinus radiata. For Ecol Manag. 2000;138(1–3):321–33.  https://doi.org/10.1016/S0378-1127(00)00422-9.CrossRefGoogle Scholar
  68. 68.
    da Silva AP, Imhoff S, Kay B. Plant response to mechanical resistance and air-filled porosity of soils under conventional and no-tillage system. Sci Agric. 2004;61(4):451–6.CrossRefGoogle Scholar
  69. 69.
    Soil Science Division Staff United States Department of Agriculture. A soil survey manual, USDA Handbook 18. C. Ditzler, K. Scheffe, and H.C. Monger (eds). Government Printing Office, Washington, D.C. 2017.Google Scholar
  70. 70.
    Dougherty PM, Gresham CA. Conceptual analysis of southern pine plantation establishment and early growth. South J App For. 1988;12(3):160–6.Google Scholar
  71. 71.
    Belda M, Holtanova E, Halenka T, Kalvova J. Climate classification revisited: from Koppen to Trewartha. Clim Res. 2014;59(1):1–13.  https://doi.org/10.3354/cr01204.CrossRefGoogle Scholar
  72. 72.
    Mason EG. Linking hybrid mensurational/eco-physiological growth and yield models with crop establishment: a replacement for time gain analysis. New For. 2013;44(6):951–9.  https://doi.org/10.1007/s11056-013-9387-3.CrossRefGoogle Scholar
  73. 73.
    Mason EG, Milne PG. Effects of weed control, fertilization, and soil cultivation on the growth of Pinus radiata at midrotation in Canterbury, New Zealand. Can J For Res. 1999;29(7):985–92.  https://doi.org/10.1139/x99-087.CrossRefGoogle Scholar
  74. 74.
    Kelting DL, Burger JA, Patterson SC, Aust WM, Miwa M, Trettin CC. Soil quality assessment in domesticated forests—a southern pine example. For Ecol Manag. 1999;122(1–2):167–85.  https://doi.org/10.1016/S0378-1127(99)00040-7.CrossRefGoogle Scholar
  75. 75.
    Barrios PG, Bidegain MP, Gutierrez L. Effects of tillage intensities on spatial soil variability and site-specific management in early growth of Eucalyptus grandis. For Ecol Manag. 2015;346:41–50.  https://doi.org/10.1016/j.foreco.2015.02.031.CrossRefGoogle Scholar
  76. 76.
    Corbeels M, McMurtrie RE, Pepper DA, Mendham DS, Grove TS, O'Connell AM. Long-term changes in productivity of eucalypt plantations under different harvest residue and nitrogen management practices: a modelling analysis. For Ecol Manag. 2005;217(1):1–18.  https://doi.org/10.1016/j.foreco.2005.05.057.CrossRefGoogle Scholar
  77. 77.
    Wendling B, Jucksch I, Mendonca ED, de Almeida RF, Alvarenga RC. Simulation using the century model of the carbon and nitrogen stocks in latosols of the Brazilian cerrado. Rev Cienc Agron. 2014;45(2):238–48.  https://doi.org/10.1590/S1806-66902014000200003.CrossRefGoogle Scholar
  78. 78.
    Rubilar RA, Fox T, Albaugh T, Allen HL, Mardones O. Long term null or negative effects of intensive soil preparation in radiata pine: potential issues with sustainability of intensively managed plantations. In preparation. 2017.Google Scholar
  79. 79.
    Little KM, Rolando CA. Regional vegetation management standards for commercial Eucalyptus plantations in South Africa. South For. 2008;70(2):87–97.  https://doi.org/10.2989/SOUTH.FOR.2008.70.2.4.532.Google Scholar
  80. 80.
    Ferreira JMD, Stape JL. Productivity gains by fertilisation in Eucalyptus urophylla clonal plantations across gradients in site and stand conditions. South For. 2009;71(4):253–8.  https://doi.org/10.2989/SF.2009.71.4.1.1028.Google Scholar
  81. 81.
    da Silva JRV, Alves PLDA, de Toledo REB. Weed control strip influences the initial growth of Eucalyptus grandis. Acta Sci-Agron. 2012;34(1):29–35.Google Scholar
  82. 82.
    Rubilar RA, Albaugh TJ, Allen HL, Alvarez J, Fox TR, Stape JL. Foliage development and leaf area duration in Pinus radiata. For Ecol Manag. 2013;304:455–63.  https://doi.org/10.1016/j.foreco.2013.05.044.CrossRefGoogle Scholar
  83. 83.
    Sampson DA, Wynne RH, Seiler JR. Edaphic and climatic effects on forest stand development, net primary production, and net ecosystem productivity simulated for Coastal Plain loblolly pine in Virginia. J Geophys Res Biogeosci. 2008;113(G1)  https://doi.org/10.1029/2006JG000270.
  84. 84.
    Gonzalez-Benecke CA, Jokela EJ, Martin TA. Modeling the effects of stand development, site quality, and silviculture on leaf area index, litterfall, and forest floor accumulations in loblolly and slash pine plantations. For Sci. 2012;58(5):457–71.  https://doi.org/10.5849/forsci.11-072.Google Scholar
  85. 85.
    Tarouco CP, Agostinetto D, Panozzo LE, dos Santos LS, Vignolo GK, Ramos LOD. Weed interference periods on the initial growth of eucalyptus. Pesqui Agrop Bras. 2009;44(9):1131–7.  https://doi.org/10.1590/S0100-204X2009000900010.CrossRefGoogle Scholar
  86. 86.
    Kogan M, Figueroa R, Gilabert H. Weed control intensity effects on young radiata pine growth. Crop Prot. 2002;21(3):253–7.  https://doi.org/10.1016/S0261-2194(01)00084-9.CrossRefGoogle Scholar
  87. 87.
    Adams PR, Beadle CL, Mendham NJ, Smethurst PJ. The impact of timing and duration of grass control on growth of a young Eucalyptus globulus Labill. Plantation New For. 2003;26(2):147–65.  https://doi.org/10.1023/A:1024490707175.Google Scholar
  88. 88.
    South DB, Miller JH. Growth response analysis after early control of woody competition for 14 loblolly pine plantations in the southern US. For Ecol Manag 2007;242(2–3):569–577.Google Scholar
  89. 89.
    Mason EG, Kirongo B. Responses of radiata pine clones to varying levels of pasture competition in a semiarid environment. Can J For Res. 1999;29(7):934–9.  https://doi.org/10.1139/x99-113.CrossRefGoogle Scholar
  90. 90.
    Stape JL, Binkley D, Ryan MG, Fonseca S, Loos RA, Takahashi EN, et al. The Brazil Eucalyptus potential productivity project: influence of water, nutrients and stand uniformity on wood production. For Ecol Manag. 2010;259(9):1684–94.  https://doi.org/10.1016/j.foreco.2010.01.012.CrossRefGoogle Scholar
  91. 91.
    • Martin TA, Johnsen KH, White TL. Ideotype development in southern pines: rationale and strategies for overcoming scale-related obstacles. For Sci. 2001;47(1):21–8. Interesting paper on how the ideotype concept may be used to define silvicultural strategies for managing fast growing plantations.Google Scholar
  92. 92.
    Miller JH, Zutter BR, Zedaker SM, Edwards MB, Newbold RA. Growth and yield relative to competition for loblolly pine plantations to midrotation—a southeastern United States regional study. South J Appl For. 2003;27(4):237–52.Google Scholar
  93. 93.
    Liechty HO, Fristoe C. Response of midrotation pine stands to fertilizer and herbicide application in the western Gulf Coastal Plain. South J Appl For. 2013;37(2):69–74.  https://doi.org/10.5849/sjaf.11-044.CrossRefGoogle Scholar
  94. 94.
    Maguire DA, Mainwaring DB, Rose R, Garber SM, Dinger EJ. Response of coastal Douglas-fir and competing vegetation to repeated and delayed weed control treatments during early plantation development. Can J For Res. 2009;39(6):1208–19.  https://doi.org/10.1139/X09-032.CrossRefGoogle Scholar
  95. 95.
    Albaugh TJ, Allen HL, Zutter BR, Quicke HE. Vegetation control and fertilization in midrotation Pinus taeda stands in the southeastern United States. Ann For Sci. 2003;60(7):619–24.  https://doi.org/10.1051/forest:2003054.CrossRefGoogle Scholar
  96. 96.
    Flores FJ, Allen HL, Cheshire HM, Davis JM, Fuentes M, Kelting D. Using multispectral satellite imagery to estimate leaf area and response to silvicultural treatments in loblolly pine stands. Can J For Res. 2006;36(6):1587–96.  https://doi.org/10.1139/x06-030.CrossRefGoogle Scholar
  97. 97.
    Hill DA, Prasad R, Leckie DG. Mapping of scotch broom (Cytisus scoparius) with landsat imagery. Weed Technol. 2016;30(2):539–58.  https://doi.org/10.1614/WT-D-15-00038.1.CrossRefGoogle Scholar
  98. 98.
    Hung C, Xu Z, Sukkarieh S. Feature learning based approach for weed classification using high resolution aerial images from a digital camera mounted on a UAV. Remote Sens Basel. 2014;6(12):12037–54.  https://doi.org/10.3390/rs61212037.CrossRefGoogle Scholar
  99. 99.
    Manzanera JA, Garcia-Abril A, Pascual C, Tejera R, Martin-Fernandez S, Tokola T, et al. Fusion of airborne LiDAR and multispectral sensors reveals synergic capabilities in forest structure characterization. Gisci Remote Sens. 2016;53(6):723–38.  https://doi.org/10.1080/15481603.2016.1231605.CrossRefGoogle Scholar
  100. 100.
    Peduzzi A, Allen HL, Wynne RH. Leaf area of overstory and understory in pine plantations in the flatwoods. South J Appl For. 2010;34(4):154–60.Google Scholar
  101. 101.
    • Blinn CE, Albaugh TJ, Fox TR, Wynne RH, Stape JL, Rubilar RA, et al. A method for estimating deciduous competition in pine stands using landsat. Southern J Appl For. 2012;36(2):71-8. This paper highlights how temporal dynamics of competing vegetation can be assessed using simple remote sensing tools and applied for intensive management of plantations.CrossRefGoogle Scholar
  102. 102.
    Longchamps L, Panneton B, Reich R, Simard MJ, Leroux GD. Spatial pattern of weeds based on multispecies infestation maps created by imagery. Weed Sci. 2016;64(3):474–85.  https://doi.org/10.1614/WS-D-15-00178.1.CrossRefGoogle Scholar
  103. 103.
    Attiwill PM, Adams MA. Nutrition of eucalypts, vol. viii. Collingwood, Vic.: CSIRO; 1996. p. 440.Google Scholar
  104. 104.
    Attiwill PM, Adams MA. Nutrient cycling in forests. New Phytol. 1993;124(4):561–82.  https://doi.org/10.1111/j.1469-8137.1993.tb03847.x.CrossRefGoogle Scholar
  105. 105.
    Nambiar EKS. Sustained productivity of forests is a continuing challenge to soil science. Soil Sci Soc Am J. 1996;60(6):1629–42.  https://doi.org/10.2136/sssaj1996.03615995006000060006x.CrossRefGoogle Scholar
  106. 106.
    Kimmins JP. Forest ecology: a foundation for sustainable forest management and environmental ethics in forestry. 3rd ed. Upper Saddle River, N.J.: Prentice Hall; 2004. 1 v. (various pagings) pGoogle Scholar
  107. 107.
    Albaugh TJ, Allen HL, Fox TR. Nutrient use and uptake in Pinus taeda. Tree Physiol. 2008;28(7):1083–98.  https://doi.org/10.1093/treephys/28.7.1083.CrossRefGoogle Scholar
  108. 108.
    Binkley D, Fisher RF. Ecology and management of forest soils, vol. xiii. 4th ed. Hoboken, NJ: Wiley; 2013. p. 347.Google Scholar
  109. 109.
    • Laclau JP, Ranger J, Goncalves JLD, Maquere V, Krusche AV, M'Bou AT, et al. Biogeochemical cycles of nutrients in tropical Eucalyptus plantations, main features shown by intensive monitoring in Congo and Brazil. For Ecol Mana. 2010;259(9):1771–85. This paper provides a strong ecological analysis of effects of intensively managed Eucalyptus on soil nutrient balance and challenges for sustained production of fast growing plantations.CrossRefGoogle Scholar
  110. 110.
    Laclau JP, Levillain J, Deleporte P, Nzila JD, Bouillet JP, Saint Andre L, et al. Organic residue mass at planting is an excellent predictor of tree growth in Eucalyptus plantations established on a sandy tropical soil. For Ecol Manag. 2010;260(12):2148–59.  https://doi.org/10.1016/j.foreco.2010.09.007.CrossRefGoogle Scholar
  111. 111.
    Smith CT, Lowe AT, Skinner MF, Beets PN, Schoenholtz SH, Fang SZ. Response of radiata pine forests to residue management and fertilisation across a fertility gradient in New Zealand. For Ecol Manag. 2000;138(1–3):203–23.  https://doi.org/10.1016/S0378-1127(00)00397-2.CrossRefGoogle Scholar
  112. 112.
    Tutua SS, Xu ZH, Blumfield TJ, Bubb KA. Long-term impacts of harvest residue management on nutrition, growth and productivity of an exotic pine plantation of sub-tropical Australia. For Ecol Manag. 2008;256(4):741–8.  https://doi.org/10.1016/j.foreco.2008.05.029.CrossRefGoogle Scholar
  113. 113.
    Fox TR, Miller BW, Rubilar R, Stape JL, Albaugh TJ. Phosphorus nutrition of forest plantations: the role of inorganic and organic phosphorus. Phosphorus in Action: Springer; 2011. p. 317–38,  https://doi.org/10.1007/978-3-642-15271-9_13.
  114. 114.
    Turner J, Lambert M. Analysing inter-rotational productivity and nutrition in a New South Wales radiata pine plantation. New For. 2013;44(5):785–98.  https://doi.org/10.1007/s11056-013-9369-5.CrossRefGoogle Scholar
  115. 115.
    Goncalves JL, Benedetti V. Forest nutrition and fertilization. Piracicaba, Sao Paulo, Brazil: Instituto de Pesquisas e Estudos Florestais; 2004. p. 421.Google Scholar
  116. 116.
    Rubilar RA, Allen HL, Fox T, Stape J, Albaugh T. Forestales. In: Echeverria H, Garcia F, editors. Fertilidad de suelos y fertilización de cultivos. Buenos Aires, Argentina: Instituto Nacional de Tecnologia Agraria (INTA); 2014. p. 904.Google Scholar
  117. 117.
    da Silva PHM, Poggiani F, Silva AA, Neto IP, de Paula RC. Mortality, initial growth and soil solution in eucalypts stands with slow release fertilization. Cerne. 2015;21(3):473–81.CrossRefGoogle Scholar
  118. 118.
    Qiao MJ, Huang TH, Jiang JY, Fu YL. Release characteristics and effects on eucalyptus tree growth of fertilizer from wood residue slow-release fertilizer shell. Wood Fiber Sci. 2016;48(4):217–27.Google Scholar
  119. 119.
    Carlyle JC. Relationships between nitrogen uptake, leaf area, water status and growth in an 11-year-old Pinus radiata plantation in response to thinning, thinning residue, and nitrogen fertiliser. For Ecol Manag. 1998;108(1–2):41–55.  https://doi.org/10.1016/S0378-1127(97)00333-2.CrossRefGoogle Scholar
  120. 120.
    Ducey M, Allen HL. Nutrient supply and fertilization efficiency in midrotation loblolly pine plantations: a modeling analysis. For Sci. 2001;47(1):96–102.Google Scholar
  121. 121.
    Ramirez MV, Rubilar RA, Montes C, Stape JL, Fox TR, Allen HL. Nitrogen availability and mineralization in Pinus radiata stands fertilized mid-rotation at three contrasting sites. J Soil Sci Plant Nut. 2016;16(1):118–36.Google Scholar
  122. 122.
    Smethurst PJ, Forest fertilization: trends in knowledge and practice compared to agriculture 2009: International Plan Nutrition Institute.Google Scholar
  123. 123.
    Peduzzi A, Wynne RH, Fox TR, Nelson RF, Thomas VA. Estimating leaf area index in intensively managed pine plantations using airborne laser scanner data. For Ecol Manag. 2012;270:54–65.  https://doi.org/10.1016/j.foreco.2011.12.048.CrossRefGoogle Scholar
  124. 124.
    Neto CJG, Hakamada RE, Otto MSG, Silva SR, Stape JL. Calibration of two indirect methods for estimating the leaf area index in Eucalyptus plantations. Sci For. 2015;43(108):919–30.Google Scholar
  125. 125.
    Smethurst P, Baillie C, Cherry M, Holz G. Fertilizer effects on LAI and growth of four Eucalyptus nitens plantations. For Ecol Manag. 2003;176(1–3):531–42.  https://doi.org/10.1016/S0378-1127(02)00226-8.CrossRefGoogle Scholar
  126. 126.
    da Silva RML, Hakamada RE, Bazani JH, Otto MSG, Stape JL. Fertilization response, light use, and growth efficiency in eucalyptus plantations across soil and climate gradients in Brazil. Forests. 2016;7(6)  https://doi.org/10.3390/f7060117.
  127. 127.
    Albaugh TJ, Rubilar RA, Fox TR, Allen HL, Urrego JB, Zapata M, et al. Response of Eucalyptus grandis in Colombia to mid-rotation fertilization is dependent on site and rate but not frequency of application. For Ecol Manag. 2015;350:30–9.  https://doi.org/10.1016/j.foreco.2015.04.030.CrossRefGoogle Scholar
  128. 128.
    Subedi S, Fox TR. Modeling repeated fertilizer response and one-time midrotation fertilizer response in loblolly pine plantations using FR in the 3-PG process model. For Ecol Manag. 2016;380:90–9.  https://doi.org/10.1016/j.foreco.2016.08.040.CrossRefGoogle Scholar
  129. 129.
    Albaugh TJ, Allen HL, Fox TR. Historical patterns of forest fertilization in the southeastern United States from 1969 to 2004. South J Appl For. 2007;31(3):129–37.Google Scholar
  130. 130.
    Durán A, Gryzenhout M, Slippers B, Ahumada R, Rotella A, Flores F, et al. Phytophthora pinifolia sp. nov. associated with a serious needle disease of Pinus radiata in Chile. Plant Pathol. 2008;57(4):715–27.  https://doi.org/10.1111/j.1365-3059.2008.01893.x.CrossRefGoogle Scholar
  131. 131.
    • Wingfield MJ, Slippers B, Hurley BP, Coutinho TA, Wingfield BD, Roux J. Eucalypt pests and diseases: growing threats to plantation productivity. South For. 2008;70(2):139–44. This paper provides insights about forest health challenges for intensively managed plantations expanding across environments with higher risk from biotic agents.Google Scholar
  132. 132.
    •• Goncalves JLD, Alvares CA, Higa AR, Silva LD, Alfenas AC, Stahl J, et al. Integrating genetic and silvicultural strategies to minimize abiotic and biotic constraints in Brazilian eucalypt plantations. For Ecol Manag. 2013;301:6–27.Interesting paper describing advances of silviculture in Brasil from a productivity and sustainability point of view emphasizing the importance of GxE interactions and silvicultural strategies.  https://doi.org/10.1016/j.foreco.2012.12.030.CrossRefGoogle Scholar
  133. 133.
    Watt P, Watt M. Forest planning applications using high resolution satellite data. N Z J For. 2012;57:32–40.Google Scholar
  134. 134.
    •• Mitchell PJ, O'Grady AP, Pinkard EA, Brodribb TJ, Arndt SK, Blackman CJ, et al. An ecoclimatic framework for evaluating the resilience of vegetation to water deficit. Glob Chang Biol. 2016;22(5):1677–89. This opinion paper presents the increasing risks of water deficit on contrasting intensively managed species and the challenges to evaluate the final effects on planted forests across different environments at different stages of developmnent.CrossRefGoogle Scholar
  135. 135.
    Matusick G, Ruthrof KX, Fontaine JB, Hardy GES. Eucalyptus forest shows low structural resistance and resilience to climate change-type drought. J Veg Sci. 2016;27(3):493–503.  https://doi.org/10.1111/jvs.12378.CrossRefGoogle Scholar
  136. 136.
    Jactel H, Petit J, Desprez-Loustau M-L, Delzon S, Piou D, Battisti A, et al. Drought effects on damage by forest insects and pathogens: a meta-analysis. Glob Chang Biol. 2012;18(1):267–76.  https://doi.org/10.1111/j.1365-2486.2011.02512.x.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Rafael A. Rubilar
    • 1
  • H. Lee Allen
    • 2
  • Thomas R. Fox
    • 3
  • Rachel L. Cook
    • 2
  • Timothy J. Albaugh
    • 4
  • Otávio C. Campoe
    • 5
  1. 1.Cooperativa de Productividad Forestal, Departamento de Silvicultura, Facultad de Ciencias ForestalesUniversidad de ConcepciónConcepciónChile
  2. 2.Forest Productivity Cooperative, Department of Forestry and Environmental ResourcesNorth Carolina State UniversityRaleighUSA
  3. 3.Forest Research CenterRayonier Inc.YuleeUSA
  4. 4.Virginia Tech Department of Forest Resources and Environmental ConservationForest Productivity CooperativeBlacksburgUSA
  5. 5.Forest Productivity Cooperative, Department of Agriculture Biodiversity and ForestsFederal University of Santa CatarinaCuritibanosBrazil

Personalised recommendations