Skip to main content

Advertisement

Log in

Damage Control Resuscitation Across the Phases of Major Injury Care

  • Modern Trauma Resuscitation (AW Kirkpatrick, Section Editor)
  • Published:
Current Trauma Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Trauma damage control has undergone a recent paradigm shift, broadening its focus from surgery to resuscitation. This review details central components of damage control resuscitation (DCR) across the phases of major injury care and the evidence behind its adoption.

Recent Findings

Permissive hypotension, minimization of crystalloid fluids, and early balanced blood product resuscitation have each been associated with improved outcomes in hemorrhaging patients. These tactics compliment current strategies of achieving hemorrhage control, including damage control surgery.

Summary

DCR is now integrated into care from the injury scene, through the resuscitation bay, the operating room, and into the intensive care unit. Its use limits the physiologic derangement experienced by the injured patient and minimizes preventable death from hemorrhage. It has become the accepted standard of modern trauma care and is shaping contemporary trauma systems and education. Future evidence-based advancements in trauma care will be scrutinized against this standard.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Cothren CC, Moore EE, Hedegaard HB, et al. Epidemiology of urban trauma deaths: a comprehensive reassessment 10 years later. World J Surg. 2007;31:1507–11. doi:10.1007/s00268-007-9087-2.

    Article  PubMed  Google Scholar 

  2. Centers for Disease Control and Prevention: Web-based injury statistics query and reporting system. Atlanta: US Department of Health and Human Services, CDC, National Center for Injury Prevention and Control, 2003.

  3. • Oyeniyi BT, Fox EE, Scerbo M, et al. Trends in 1029 trauma deaths at a level 1 trauma center: impact of a bleeding control bundle of care. Injury. 2017;48:5–12. doi:10.1016/j.injury.2016.10.037. Evidence demonstrating that DCR, by decreasing hemorrhagic death, may decrease overall trauma mortality

    Article  PubMed  Google Scholar 

  4. Surface Ship Survivability. Naval War Publication 3–20.31. Washington, DC: Department of Defense; 1996.

  5. Shapiro MB, Jenkins DH, Schwab CW, et al. Damage control: collective review. J Trauma. 2000;49:969–78.

    Article  CAS  PubMed  Google Scholar 

  6. Moore EE. Staged laparotomy for the hypothermia, acidosis, and coagulopathy syndrome. Am J Surg. 1996;172:405–10.

    Article  CAS  PubMed  Google Scholar 

  7. Mikhail J. The trauma triad of death: hypothermia, acidosis, and coagulopathy. AACN Clin Issues. 1999;10:85–94.

    Article  CAS  PubMed  Google Scholar 

  8. Luna GK, Maier RV, Pavlin EG, et al. Incidence and effect of hypothermia in seriously injured patients. J Trauma. 1987;27:1014–8.

    Article  CAS  PubMed  Google Scholar 

  9. Tsuei BJ, Kearney PA. Hypothermia in the trauma patient. Injury. 2004;35:7–15.

    Article  PubMed  Google Scholar 

  10. Jurkovich GJ, Greiser WB, Luterman A, et al. Hypothermia in trauma victims: an ominous predictor of survival. J Trauma. 1987;27:1019–24.

    Article  CAS  PubMed  Google Scholar 

  11. Wade CE, Salinas J, Eastridge BJ, et al. Admission hypo- or hyperthermia and survival after trauma in civilian and military environments. Int J Emerg Med. 2011;4:35. doi:10.1186/1865-1380-4-35.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Burch JM, Denton JR, Noble RD. Physiologic rationale for abbreviated laparotomy. Surg Clin North Am. 1997;77:779–82.

    Article  CAS  PubMed  Google Scholar 

  13. Ho AM, Karmakar MK, Dion PW. Are we giving enough coagulation factors during major trauma resuscitation? Am J Surg. 2005;190:479–84. doi:10.1016/j.amjsurg.2005.03.034.

    Article  PubMed  Google Scholar 

  14. Martini WZ, Pusateri AE, Uscilowicz JM, et al. Independent contributions of hypothermia and acidosis to coagulopathy in swine. J Trauma. 2005;58:1002–9.

    Article  PubMed  Google Scholar 

  15. Watts DD, Trask A, Soeken K, et al. Hypothermic coagulopathy in trauma: effect of varying levels of hypothermia on enzyme speed, platelet function, and fibrinolytic activity. J Trauma. 1998;44:846–54.

    Article  CAS  PubMed  Google Scholar 

  16. Bannon MP, O’Neill CM, Martin M, et al. Central venous oxygen saturation, arterial base deficit, and lactate concentration in trauma patients. American Surg. 1995;61:738–45.

    CAS  Google Scholar 

  17. Davis JW, Kaups KL, Parks SN. Base deficit is superior to pH in evaluating clearance of acidosis after traumatic shock. J Trauma. 1998;44:114–8.

    Article  CAS  PubMed  Google Scholar 

  18. Rutherford EJ, Morris JA Jr, Reed GW, et al. Base deficit stratifies mortality and determines therapy. J Trauma. 1992;33:417–23.

    Article  CAS  PubMed  Google Scholar 

  19. Eastridge BJ, Salinas J, McManus JG, et al. Hypotension begins at 110 mm Hg: redefining “hypotension” with data. J Trauma. 2007;63:291–7. doi:10.1097/TA.0b013e31809ed924.

    Article  PubMed  Google Scholar 

  20. Abramson D, Scalea TM, Hitchcock R, et al. Lactate clearance and survival following injury. J Trauma. 1993;35:584–8.

    Article  CAS  PubMed  Google Scholar 

  21. Meng ZH, Wolberg AS, Monroe DM 3rd, et al. The effect of temperature and pH on the activity of factor VIIa: implications for the efficacy of high-dose factor VIIa in hypothermic and acidotic patients. J Trauma. 2003;55:886–91. doi:10.1097/01.TA.0000066184.20808.A5.

    Article  CAS  PubMed  Google Scholar 

  22. Cosgriff N, Moore EE, Sauaia A, et al. Predicting life-threatening coagulopathy in the massively transfused trauma patient: hypothermia and acidoses revisited. J Trauma. 1997;42:857–61.

    Article  CAS  PubMed  Google Scholar 

  23. Traverso LW, Medina F, Bolin RB. The buffering capacity of crystalloid and colloid resuscitation solutions. Resuscitation. 1985;12:265–70.

    Article  CAS  PubMed  Google Scholar 

  24. Hirshberg A, Dugas M, Banez EI, et al. Minimizing dilutional coagulopathy in exsanguinating hemorrhage: a computer simulation. J Trauma. 2003;54:454–63. doi:10.1097/01.TA.0000053245.08642.1F.

    Article  PubMed  Google Scholar 

  25. Brohi K, Singh J, Heron M, et al. Acute traumatic coagulopathy. J Trauma. 2003;54:1127–30. doi:10.1097/01.TA.0000069184.82147.06.

    Article  PubMed  Google Scholar 

  26. MacLeod JB, Lynn M, McKenney MG, et al. Early coagulopathy predicts mortality in trauma. J Trauma. 2003;55:39–44. doi:10.1097/01.TA.0000075338.21177.EF.

    Article  PubMed  Google Scholar 

  27. Duchesne JC, McSwain NE Jr, Cotton BA, et al. Damage control resuscitation: the new face of damage control. J Trauma. 2010;69:976–90. doi:10.1097/TA.0b013e3181f2abc9.

    Article  PubMed  Google Scholar 

  28. Ostrowski SR, Henriksen HH, Stensballe J, et al. Sympathoadrenal activation and endotheliopathy are drivers of hypocoagulability and hyperfibrinolysis in trauma: a prospective observational study of 404 severely injured patients. J Trauma Acute Care Surg. 2017;82:293–301. doi:10.1097/TA.0000000000001304.

    Article  PubMed  Google Scholar 

  29. Spahn DR, Rossaint R. Coagulopathy and blood component transfusion in trauma. Br J Anaesth. 2005;95:130–9. doi:10.1093/bja/aei169.

    Article  CAS  PubMed  Google Scholar 

  30. May AK, Young JS, Butler K, et al. Coagulopathy in severe closed head injury: is empiric therapy warranted? Am Surg. 1997;63:233–6.

    CAS  PubMed  Google Scholar 

  31. Hess JR, Brohi K, Dutton RP, et al. The coagulopathy of trauma: a review of mechanisms. J Trauma. 2008;65:748–54. doi:10.1097/TA.0b013e3181877a9c.

    Article  CAS  PubMed  Google Scholar 

  32. Cardenas JC, Wade CE, Holcomb JB. Mechanisms of trauma-induced coagulopathy. Curr Opin Hematol. 2014;21:404–9. doi:10.1097/MOH.0000000000000063.

    Article  PubMed  Google Scholar 

  33. Chang R, Cardenas JC, Wade CE, et al. Advances in the understanding of trauma-induced coagulopathy. Blood. 2016;128:1043–9. doi:10.1182/blood-2016-01-636423.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. American College of Surgeons Committee on Trauma. ATLS, Advanced trauma life support student course manual. 9th ed. Chicago: American College of Surgeons; 2012.

    Google Scholar 

  35. Cotton BA, Jerome R, Collier BR, et al. Guidelines for prehospital fluid resuscitation in the injured patient. J Trauma. 2009;67:389–402. doi:10.1097/TA.0b013e3181a8b26f.

    Article  PubMed  Google Scholar 

  36. Mapstone J, Roberts I, Evans P. Fluid resuscitation strategies: a systematic review of animal trials. J Trauma. 2003;55:571–89. doi:10.1097/01.TA.0000062968.69867.6F.

    Article  PubMed  Google Scholar 

  37. Bickell WH, Wall MJ Jr, Pepe PE, et al. Immediate versus delayed fluid resuscitation for hypotensive patients with penetrating torso injuries. New Engl J Med. 1994;331:1105–9. doi:10.1056/NEJM199410273311701.

    Article  CAS  PubMed  Google Scholar 

  38. Dutton RP, Mackenzie CF, Scalea TM. Hypotensive resuscitation during active hemorrhage: impact on in-hospital mortality. J Trauma. 2002;52:1141–6.

    Article  PubMed  Google Scholar 

  39. Sondeen JL, Coppes VG, Holcomb JB. Blood pressure at which rebleeding occurs after resuscitation in swine with aortic injury. J Trauma. 2003;54:S110–7. doi:10.1097/01.TA.0000047220.81795.3D.

    Article  PubMed  Google Scholar 

  40. •• Schreiber MA, Meier EN, Tisherman SA, et al. A controlled resuscitation strategy is feasible and safe in hypotensive trauma patients: results of a prospective randomized pilot trial. J Trauma Acute Care Surg. 2015;78:687–95. doi:10.1097/TA.0000000000000600. A randomized trial demonstrating that permissive hypotension may lead to an early improvement in survival in trauma patients

    Article  PubMed  PubMed Central  Google Scholar 

  41. Scheingraber S, Rehm M, Sehmisch C, et al. Rapid saline infusion produces hyperchloremic acidosis in patients undergoing gynecologic surgery. Anesthesiology. 1999;90:1265–70.

    Article  CAS  PubMed  Google Scholar 

  42. Williams EL, Hildebrand KL, McCormick SA, et al. The effect of intravenous lactated Ringer’s solution versus 0.9% sodium chloride solution on serum osmolality in human volunteers. Anesth Analg. 1999;88:999–1003.

    CAS  PubMed  Google Scholar 

  43. Kirkpatrick AW, Chun R, Brown R, et al. Hypothermia and the trauma patient. Can J Surg. 1999;42:333–43.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Jensen SD, Cotton BA. Damage control laparotomy in trauma. Br J Surg. 2017; doi:10.1002/bjs.10519.

  45. Roberts DJ, Ball CG, Feliciano DV, et al. History of the innovation of damage control for management of trauma patients: 1902-2016. Annals Surg. 2017;265:1034–44. doi:10.1097/SLA.0000000000001803.

    Article  Google Scholar 

  46. Roberts DJ, Ball CG, Kirkpatrick AW. Increased pressure within the abdominal compartment: intra-abdominal hypertension and the abdominal compartment syndrome. Curr Opin Crit Care. 2016;22:174–85. doi:10.1097/MCC.0000000000000289.

    Article  PubMed  Google Scholar 

  47. Malbrain ML, De Laet I. It’s all in the gut: introducing the concept of acute bowel injury and acute intestinal distress syndrome…. Crit Care Med. 2009;37:365–6. doi:10.1097/CCM.0b013e3181935001.

    Article  PubMed  Google Scholar 

  48. Malbrain ML, De Laet I. AIDS is coming to your ICU: be prepared for acute bowel injury and acute intestinal distress syndrome. Intensive Care Med. 2008;34:1565–9. doi:10.1007/s00134-008-1135-3.

    Article  PubMed  Google Scholar 

  49. Roberts DJ, De Waele J, Kirkpatrick AW, et al. Intra-abdominal hypertension and the abdominal compartment syndrome. In: Gravlee GP, Davis RF, Hammon JW, Kussman BD, editors. Surgical Intensive Care Medicine. 3rd ed. Switzerland: Springer International Publishing; 2016.

    Google Scholar 

  50. Carr JA. Abdominal compartment syndrome: a decade of progress. J Am Coll Surg. 2013;216:135–46. doi:10.1016/j.jamcollsurg.2012.09.004.

    Article  PubMed  Google Scholar 

  51. Miller PR, Thompson JT, Faler BJ, et al. Late fascial closure in lieu of ventral hernia: the next step in open abdomen management. J Trauma. 2002;53:843–9. doi:10.1097/01.TA.0000027879.14969.C9.

    Article  PubMed  Google Scholar 

  52. Holodinsky JK, Roberts DJ, Ball CG, et al. Risk factors for intra-abdominal hypertension and abdominal compartment syndrome among adult intensive care unit patients: a systematic review and meta-analysis. Crit Care. 2013;17:R249. doi:10.1186/cc13075.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Pommerening MJ, DuBose JJ, Zielinski MD, et al. Time to first take-back operation predicts successful primary fascial closure in patients undergoing damage control laparotomy. Surgery. 2014;156:431–8. doi:10.1016/j.surg.2014.04.019.

    Article  PubMed  Google Scholar 

  54. Hatch QM, Osterhout LM, Ashraf A, et al. Current use of damage-control laparotomy, closure rates, and predictors of early fascial closure at the first take-back. J Trauma. 2011;70:1429–36. doi:10.1097/TA.0b013e31821b245a.

    Article  PubMed  Google Scholar 

  55. Bradley MJ, Dubose JJ, Scalea TM, et al. Independent predictors of enteric fistula and abdominal sepsis after damage control laparotomy: results from the prospective AAST Open Abdomen registry. JAMA Surg. 2013;148:947–54. doi:10.1001/jamasurg.2013.2514.

    Article  PubMed  Google Scholar 

  56. Brown JB, Cohen MJ, Minei JP, et al. Goal-directed resuscitation in the prehospital setting: a propensity-adjusted analysis. J Trauma Acute Care Surg. 2013;74:1207–12. doi:10.1097/TA.0b013e31828c44fd.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Rahbar E, Fox EE, del Junco DJ, et al. Early resuscitation intensity as a surrogate for bleeding severity and early mortality in the PROMMTT study. J Trauma Acute Care Surg. 2013;75:S16–23. doi:10.1097/TA.0b013e31828fa535.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Savage SA, Zarzaur BL, Croce MA, et al. Redefining massive transfusion when every second counts. J Trauma Acute Care Surg. 2013;74:396–400. doi:10.1097/TA.0b013e31827a3639.

    Article  PubMed  Google Scholar 

  59. Malone DL, Hess JR, Fingerhut A. Massive transfusion practices around the globe and a suggestion for a common massive transfusion protocol. J Trauma. 2006;60:S91–6. doi:10.1097/01.ta.0000199549.80731.e6.

    Article  PubMed  Google Scholar 

  60. •• Holcomb JB, Tilley BC, Baraniuk S, et al. Transfusion of plasma, platelets, and red blood cells in a 1:1:1 vs a 1:1:2 ratio and mortality in patients with severe trauma: the PROPPR randomized clinical trial. JAMA. 2015;313:471–82. doi:10.1001/jama.2015.12. An RCT that highlights that 1:1:1 resuscitation ratios achieves greater hemostasis and leads to fewer bleeding deaths by 24 hours compared to a 1:1:2 ratio

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Cannon JW, Khan MA, Raja AS, et al. Damage control resuscitation in patients with severe traumatic hemorrhage: a practice management guideline from the Eastern Association for the Surgery of Trauma. J Trauma Acute Care Surg. 2017;82:605–17. doi:10.1097/TA.0000000000001333.

    Article  PubMed  Google Scholar 

  62. Pati S, Matijevic N, Doursout MF, et al. Protective effects of fresh frozen plasma on vascular endothelial permeability, coagulation, and resuscitation after hemorrhagic shock are time dependent and diminish between days 0 and 5 after thaw. J Trauma. 2010;69:S55–63. doi:10.1097/TA.0b013e3181e453d4.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Cardenas JC, Cap AP, Swartz MD, et al. Plasma resuscitation promotes coagulation homeostasis following shock-induced hypercoagulability. Shock. 2016;45:166–73. doi:10.1097/SHK.0000000000000504.

    Article  CAS  PubMed  Google Scholar 

  64. Ketchum L, Hess JR, Hiippala S. Indications for early fresh frozen plasma, cryoprecipitate, and platelet transfusion in trauma. J Trauma. 2006;60:S51–8. doi:10.1097/01.ta.0000199432.88847.0c.

    Article  PubMed  Google Scholar 

  65. Holcomb JB, Donathan DP, Cotton BA, et al. Prehospital transfusion of plasma and red blood cells in trauma patients. Prehosp Emerg Care. 2015;19:1–9. doi:10.3109/10903127.2014.923077.

    Article  PubMed  Google Scholar 

  66. Brown JB, Sperry JL, Fombona A, et al. Pre-trauma center red blood cell transfusion is associated with improved early outcomes in air medical trauma patients. J Am Coll Surg. 2015;220:797–808. doi:10.1016/j.jamcollsurg.2015.01.006.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Henriksen HH, Rahbar E, Baer LA, et al. Pre-hospital transfusion of plasma in hemorrhaging trauma patients independently improves hemostatic competence and acidosis. Scand J Trauma Resusc Emerg Med. 2016;24:145. doi:10.1186/s13049-016-0327-z.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Martinaud C, Ausset S, Deshayes AV, et al. Use of freeze-dried plasma in French intensive care unit in Afghanistan. J Trauma. 2011;71:1761–4. doi:10.1097/TA.0b013e31822f1285.

    Article  PubMed  Google Scholar 

  69. Glassberg E, Nadler R, Gendler S, et al. Freeze-dried plasma at the point of injury: from concept to doctrine. Shock. 2013;40:444–50. doi:10.1097/SHK.0000000000000047.

    Article  CAS  PubMed  Google Scholar 

  70. Cantle PM, Cotton BA. Prediction of massive transfusion in trauma. Crit Care Clin. 2017;33:71–84. doi:10.1016/j.ccc.2016.08.002.

    Article  PubMed  Google Scholar 

  71. Nunez TC, Voskresensky IV, Dossett LA, et al. Early prediction of massive transfusion in trauma: simple as ABC (assessment of blood consumption)? J Trauma. 2009;66:346–52. doi:10.1097/TA.0b013e3181961c35.

    Article  PubMed  Google Scholar 

  72. Cotton BA, Dossett LA, Au BK, et al. Room for (performance) improvement: provider-related factors associated with poor outcomes in massive transfusion. J Trauma. 2009;67:1004–12. doi:10.1097/TA.0b013e3181bcb2a8.

    Article  PubMed  Google Scholar 

  73. Gunter OL Jr, Au BK, Isbell JM, et al. Optimizing outcomes in damage control resuscitation: identifying blood product ratios associated with improved survival. J Trauma. 2008;65:527–34. doi:10.1097/TA.0b013e3181826ddf.

    Article  PubMed  Google Scholar 

  74. Radwan ZA, Bai Y, Matijevic N, et al. An emergency department thawed plasma protocol for severely injured patients. JAMA Surgery. 2013;148:170–5. doi:10.1001/jamasurgery.2013.414.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Cotton BA, Reddy N, Hatch QM, et al. Damage control resuscitation is associated with a reduction in resuscitation volumes and improvement in survival in 390 damage control laparotomy patients. Ann Surg. 2011;254:598–605. doi:10.1097/SLA.0b013e318230089e.

    Article  PubMed  Google Scholar 

  76. Johansson PI, Stensballe J, Oliveri R, et al. How I treat patients with massive hemorrhage. Blood. 2014;124:3052–8. doi:10.1182/blood-2014-05-575340.

    Article  CAS  PubMed  Google Scholar 

  77. Holcomb JB, del Junco DJ, Fox EE, PROMMTT Study Group, et al. The prospective, observational, multicenter, major trauma transfusion (PROMMTT) study: comparative effectiveness of a time-varying treatment with competing risks. JAMA Surgery. 2013;148:127–36. doi:10.1001/2013.jamasurg.387.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Joint Committee to Create a National Policy to Enhance Survivability From Intentional Mass Casualty Shooting Events. Improving survival from active shooter events: The Hartford Consensus. American College of Surgeons. 2013.

  79. Jacobs, LM and Joint Committee to Create a National Policy to Enhance Survivability From Intentional Mass Casualty Shooting Events. The Hartford Consensus III: implementation of bleeding control. American College of Surgeons. 2015.

  80. Spanjersberg WR, Knops SP, Schep NWL, et al. Effectiveness and complications of pelvic circumferential compression devices in patients with unstable pelvic fractures: a systematic review of literature. Injury. 2009;40:1031–5. doi:10.1016/j.injury.2009.06.164.

    Article  PubMed  Google Scholar 

  81. Croce MA, Magnotti LJ, Savage SA, et al. Emergent pelvic fixation in patients with exsanguinating pelvic fractures. J Am Coll Surg. 2007;204:935–9. doi:10.1016/j.jamcollsurg.2007.01.059.

    Article  PubMed  Google Scholar 

  82. Krieg JC, Mohr M, Ellis TJ, et al. Emergent stabilization of pelvic ring injuries by controlled circumferential compression: a clinical trial. J Trauma. 2005;59:659–64.

    Article  PubMed  Google Scholar 

  83. Eastridge BJ, Mabry RL, Seguin P, et al. Death on the battlefield (2001–2011): implications for the future of combat casualty care. J Trauma Acute Care Surg. 2012;73:S431–7. doi:10.1097/TA.0b013e3182755dcc.

    Article  PubMed  Google Scholar 

  84. Kragh JF Jr, Walters TJ, Baer DG, et al. Survival with emergency tourniquet use to stop bleeding in major limb trauma. Ann Surg. 2009;249:1–7. doi:10.1097/SLA.0b013e31818842ba.

    Article  PubMed  Google Scholar 

  85. Kragh JF Jr, Walters TJ, Baer DG, et al. Practical use of emergency tourniquets to stop bleeding in major limb trauma. J Trauma. 2008;64:S38–50. doi:10.1097/TA.0b013e31816086b1.

    Article  PubMed  Google Scholar 

  86. Lee C, Porter KM, Hodgetts TJ. Tourniquet use in the civilian prehospital setting. Emerg Med J. 2007;24:584–7. doi:10.1136/emj.2007.046359.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Doyle GS, Taillac PP. Tourniquets: a review of current use with proposals for expanded prehospital use. Prehosp Emerg Care. 2008;12:241–56. doi:10.1080/10903120801907570.

    Article  PubMed  Google Scholar 

  88. Scerbo MH, Mumm JP, Gates K, et al. Safety and appropriateness of tourniquets in 105 civilians. Prehosp Emerg Care. 2016;20:712–22. doi:10.1080/10903127.2016.1182606.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Seamon MJ, Haut ER, Van Arendonk K, et al. An evidence-based approach to patient selection for emergency department thoracotomy: a practice management guideline from the Eastern Association for the Surgery of Trauma. J Trauma Acute Care Surg. 2015;79:159–73. doi:10.1097/TA.0000000000000648.

    Article  PubMed  Google Scholar 

  90. Stannard A, Eliason JL, Rasmussen TE. Resuscitative endovascular balloon occlusion of the aorta (REBOA) as an adjunct for hemorrhagic shock. J Trauma. 2011;71:1869–72. doi:10.1097/TA.0b013e31823fe90c.

    Article  PubMed  Google Scholar 

  91. Brenner ML, Moore LJ, DuBose JJ, et al. A clinical series of resuscitative endovascular balloon occlusion of the aorta for hemorrhage control and resuscitation. J Trauma Acute Care Surg. 2013;75:506–11. doi:10.1097/TA.0b013e31829e5416.

    Article  PubMed  Google Scholar 

  92. Moore LJ, Brenner M, Kozar RA, et al. Implementation of resuscitative endovascular balloon occlusion of the aorta as an alternative to resuscitative thoracotomy for noncompressible truncal hemorrhage. J Trauma Acute Care Surg. 2015;79:523–30. doi:10.1097/TA.0000000000000809.

    Article  PubMed  Google Scholar 

  93. Sadek S, Lockey DJ, Lendrum RA, et al. Resuscitative endovascular balloon occlusion of the aorta (REBOA) in the pre-hospital setting: an additional resuscitation option for uncontrolled catastrophic haemorrhage. Resuscitation. 2016;107:135–8. doi:10.1016/j.resuscitation.2016.06.029.

    Article  PubMed  Google Scholar 

  94. Smith A, Ouellet JF, Niven D, et al. Timeliness in obtaining emergent percutaneous procedures in severely injured patients: how long is too long and should we create quality assurance guidelines? Can J Surg. 2013;56:E154–7.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Schwartz DA, Medina M, Cotton BA, et al. Are we delivering two standards of care for pelvic trauma? Availability of angioembolization after hours and on weekends increases time to therapeutic intervention. J Trauma Acute Care Surg. 2014;76:134–9. doi:10.1097/TA.0b013e3182ab0cfc.

    Article  PubMed  Google Scholar 

  96. Holcomb JB, Fox EE, Scalea TM, et al. Current opinion on catheter-based hemorrhage control in trauma patients. J Trauma Acute Care Surg. 2014;76:888–93. doi:10.1097/TA.0000000000000133.

    Article  PubMed  Google Scholar 

  97. Roberts DJ, Bobrovitz N, Zygun DA, et al. Indications for use of damage control surgery and damage control interventions in civilian trauma patients: a scoping review. J Trauma Acute Care Surg. 2015;78:1187–96. doi:10.1097/TA.0000000000000647.

    Article  PubMed  Google Scholar 

  98. Roberts DJ, Bobrovitz N, Zygun DA, et al. Indications for use of thoracic, abdominal, pelvic, and vascular damage control interventions in trauma patients: a content analysis and expert appropriateness rating study. J Trauma Acute Care Surg. 2015;79:568–79. doi:10.1097/TA.0000000000000821.

    Article  PubMed  Google Scholar 

  99. Roberts DJ, Bobrovitz N, Zygun DA, et al. Indications for use of damage control surgery in civilian trauma patients: a content analysis and expert appropriateness rating study. Ann Surg. 2016;263:1018–27. doi:10.1097/SLA.0000000000001347.

    Article  PubMed  Google Scholar 

  100. Roberts DJ, Zygun DA, Faris PD, et al. Opinions of practicing surgeons on the appropriateness of published indications for use of damage control surgery in trauma patients: an international cross-sectional survey. J Am Coll Surg. 2016;223:515–29. doi:10.1016/j.jamcollsurg.2016.06.002.

    Article  PubMed  Google Scholar 

  101. Harvin JA, Kao LS, Liang MK, et al. Decreasing the use of damage control laparotomy in trauma: a quality improvement project. J Am Coll Surg 2017. Accepted Manuscript. Doi: 10.1016/j.jamcollsurg.2017.04.010.

  102. Taylor JR, Adams SD, McNutt MK, et al. Indication-specific outcomes for damage control laparotomy: a descriptive study. Am J Surg 2017. Submitted.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John B. Holcomb.

Ethics declarations

Conflict of Interest

Dr. Holcomb is the chief medical officer of Prytime Medical Devices (The REBOA Company™), a private company that manufactures a proprietary REBOA balloon catheter. Drs. Cantle and Roberts declare no conflicts of interest relevant to this manuscript.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Human and Animal Rights

All reported studies/experiments with human or animal subjects performed by the authors have been previously published and complied with all applicable ethical standards (including the Helsinki Declaration and its amendments, institutional/national research committee standards, and international/national/institutional guidelines).

Additional information

This article is part of the Topical Collection on Modern Trauma Resuscitation

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cantle, P.M., Roberts, D.J. & Holcomb, J.B. Damage Control Resuscitation Across the Phases of Major Injury Care. Curr Trauma Rep 3, 238–248 (2017). https://doi.org/10.1007/s40719-017-0096-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40719-017-0096-9

Keywords

Navigation