Current Trauma Reports

, Volume 3, Issue 3, pp 238–248 | Cite as

Damage Control Resuscitation Across the Phases of Major Injury Care

  • Paul M. Cantle
  • Derek J. Roberts
  • John B. HolcombEmail author
Modern Trauma Resuscitation (AW Kirkpatrick, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Modern Trauma Resuscitation


Purpose of Review

Trauma damage control has undergone a recent paradigm shift, broadening its focus from surgery to resuscitation. This review details central components of damage control resuscitation (DCR) across the phases of major injury care and the evidence behind its adoption.

Recent Findings

Permissive hypotension, minimization of crystalloid fluids, and early balanced blood product resuscitation have each been associated with improved outcomes in hemorrhaging patients. These tactics compliment current strategies of achieving hemorrhage control, including damage control surgery.


DCR is now integrated into care from the injury scene, through the resuscitation bay, the operating room, and into the intensive care unit. Its use limits the physiologic derangement experienced by the injured patient and minimizes preventable death from hemorrhage. It has become the accepted standard of modern trauma care and is shaping contemporary trauma systems and education. Future evidence-based advancements in trauma care will be scrutinized against this standard.


Trauma Damage control Hemorrhagic shock Coagulopathy Resuscitation 


Compliance with Ethical Standards

Conflict of Interest

Dr. Holcomb is the chief medical officer of Prytime Medical Devices (The REBOA Company™), a private company that manufactures a proprietary REBOA balloon catheter. Drs. Cantle and Roberts declare no conflicts of interest relevant to this manuscript.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Human and Animal Rights

All reported studies/experiments with human or animal subjects performed by the authors have been previously published and complied with all applicable ethical standards (including the Helsinki Declaration and its amendments, institutional/national research committee standards, and international/national/institutional guidelines).


Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Cothren CC, Moore EE, Hedegaard HB, et al. Epidemiology of urban trauma deaths: a comprehensive reassessment 10 years later. World J Surg. 2007;31:1507–11. doi: 10.1007/s00268-007-9087-2.CrossRefPubMedGoogle Scholar
  2. 2.
    Centers for Disease Control and Prevention: Web-based injury statistics query and reporting system. Atlanta: US Department of Health and Human Services, CDC, National Center for Injury Prevention and Control, 2003.Google Scholar
  3. 3.
    • Oyeniyi BT, Fox EE, Scerbo M, et al. Trends in 1029 trauma deaths at a level 1 trauma center: impact of a bleeding control bundle of care. Injury. 2017;48:5–12. doi: 10.1016/j.injury.2016.10.037. Evidence demonstrating that DCR, by decreasing hemorrhagic death, may decrease overall trauma mortality CrossRefPubMedGoogle Scholar
  4. 4.
    Surface Ship Survivability. Naval War Publication 3–20.31. Washington, DC: Department of Defense; 1996.Google Scholar
  5. 5.
    Shapiro MB, Jenkins DH, Schwab CW, et al. Damage control: collective review. J Trauma. 2000;49:969–78.CrossRefGoogle Scholar
  6. 6.
    Moore EE. Staged laparotomy for the hypothermia, acidosis, and coagulopathy syndrome. Am J Surg. 1996;172:405–10.CrossRefGoogle Scholar
  7. 7.
    Mikhail J. The trauma triad of death: hypothermia, acidosis, and coagulopathy. AACN Clin Issues. 1999;10:85–94.CrossRefGoogle Scholar
  8. 8.
    Luna GK, Maier RV, Pavlin EG, et al. Incidence and effect of hypothermia in seriously injured patients. J Trauma. 1987;27:1014–8.CrossRefGoogle Scholar
  9. 9.
    Tsuei BJ, Kearney PA. Hypothermia in the trauma patient. Injury. 2004;35:7–15.CrossRefGoogle Scholar
  10. 10.
    Jurkovich GJ, Greiser WB, Luterman A, et al. Hypothermia in trauma victims: an ominous predictor of survival. J Trauma. 1987;27:1019–24.CrossRefGoogle Scholar
  11. 11.
    Wade CE, Salinas J, Eastridge BJ, et al. Admission hypo- or hyperthermia and survival after trauma in civilian and military environments. Int J Emerg Med. 2011;4:35. doi: 10.1186/1865-1380-4-35.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Burch JM, Denton JR, Noble RD. Physiologic rationale for abbreviated laparotomy. Surg Clin North Am. 1997;77:779–82.CrossRefGoogle Scholar
  13. 13.
    Ho AM, Karmakar MK, Dion PW. Are we giving enough coagulation factors during major trauma resuscitation? Am J Surg. 2005;190:479–84. doi: 10.1016/j.amjsurg.2005.03.034.CrossRefPubMedGoogle Scholar
  14. 14.
    Martini WZ, Pusateri AE, Uscilowicz JM, et al. Independent contributions of hypothermia and acidosis to coagulopathy in swine. J Trauma. 2005;58:1002–9.CrossRefGoogle Scholar
  15. 15.
    Watts DD, Trask A, Soeken K, et al. Hypothermic coagulopathy in trauma: effect of varying levels of hypothermia on enzyme speed, platelet function, and fibrinolytic activity. J Trauma. 1998;44:846–54.CrossRefGoogle Scholar
  16. 16.
    Bannon MP, O’Neill CM, Martin M, et al. Central venous oxygen saturation, arterial base deficit, and lactate concentration in trauma patients. American Surg. 1995;61:738–45.Google Scholar
  17. 17.
    Davis JW, Kaups KL, Parks SN. Base deficit is superior to pH in evaluating clearance of acidosis after traumatic shock. J Trauma. 1998;44:114–8.CrossRefGoogle Scholar
  18. 18.
    Rutherford EJ, Morris JA Jr, Reed GW, et al. Base deficit stratifies mortality and determines therapy. J Trauma. 1992;33:417–23.CrossRefGoogle Scholar
  19. 19.
    Eastridge BJ, Salinas J, McManus JG, et al. Hypotension begins at 110 mm Hg: redefining “hypotension” with data. J Trauma. 2007;63:291–7. doi: 10.1097/TA.0b013e31809ed924.CrossRefPubMedGoogle Scholar
  20. 20.
    Abramson D, Scalea TM, Hitchcock R, et al. Lactate clearance and survival following injury. J Trauma. 1993;35:584–8.CrossRefGoogle Scholar
  21. 21.
    Meng ZH, Wolberg AS, Monroe DM 3rd, et al. The effect of temperature and pH on the activity of factor VIIa: implications for the efficacy of high-dose factor VIIa in hypothermic and acidotic patients. J Trauma. 2003;55:886–91. doi: 10.1097/01.TA.0000066184.20808.A5.CrossRefPubMedGoogle Scholar
  22. 22.
    Cosgriff N, Moore EE, Sauaia A, et al. Predicting life-threatening coagulopathy in the massively transfused trauma patient: hypothermia and acidoses revisited. J Trauma. 1997;42:857–61.CrossRefGoogle Scholar
  23. 23.
    Traverso LW, Medina F, Bolin RB. The buffering capacity of crystalloid and colloid resuscitation solutions. Resuscitation. 1985;12:265–70.CrossRefGoogle Scholar
  24. 24.
    Hirshberg A, Dugas M, Banez EI, et al. Minimizing dilutional coagulopathy in exsanguinating hemorrhage: a computer simulation. J Trauma. 2003;54:454–63. doi: 10.1097/01.TA.0000053245.08642.1F.CrossRefPubMedGoogle Scholar
  25. 25.
    Brohi K, Singh J, Heron M, et al. Acute traumatic coagulopathy. J Trauma. 2003;54:1127–30. doi: 10.1097/01.TA.0000069184.82147.06.CrossRefPubMedGoogle Scholar
  26. 26.
    MacLeod JB, Lynn M, McKenney MG, et al. Early coagulopathy predicts mortality in trauma. J Trauma. 2003;55:39–44. doi: 10.1097/01.TA.0000075338.21177.EF.CrossRefPubMedGoogle Scholar
  27. 27.
    Duchesne JC, McSwain NE Jr, Cotton BA, et al. Damage control resuscitation: the new face of damage control. J Trauma. 2010;69:976–90. doi: 10.1097/TA.0b013e3181f2abc9.CrossRefPubMedGoogle Scholar
  28. 28.
    Ostrowski SR, Henriksen HH, Stensballe J, et al. Sympathoadrenal activation and endotheliopathy are drivers of hypocoagulability and hyperfibrinolysis in trauma: a prospective observational study of 404 severely injured patients. J Trauma Acute Care Surg. 2017;82:293–301. doi: 10.1097/TA.0000000000001304.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Spahn DR, Rossaint R. Coagulopathy and blood component transfusion in trauma. Br J Anaesth. 2005;95:130–9. doi: 10.1093/bja/aei169.CrossRefPubMedGoogle Scholar
  30. 30.
    May AK, Young JS, Butler K, et al. Coagulopathy in severe closed head injury: is empiric therapy warranted? Am Surg. 1997;63:233–6.PubMedGoogle Scholar
  31. 31.
    Hess JR, Brohi K, Dutton RP, et al. The coagulopathy of trauma: a review of mechanisms. J Trauma. 2008;65:748–54. doi: 10.1097/TA.0b013e3181877a9c.CrossRefPubMedGoogle Scholar
  32. 32.
    Cardenas JC, Wade CE, Holcomb JB. Mechanisms of trauma-induced coagulopathy. Curr Opin Hematol. 2014;21:404–9. doi: 10.1097/MOH.0000000000000063.CrossRefPubMedGoogle Scholar
  33. 33.
    Chang R, Cardenas JC, Wade CE, et al. Advances in the understanding of trauma-induced coagulopathy. Blood. 2016;128:1043–9. doi: 10.1182/blood-2016-01-636423.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    American College of Surgeons Committee on Trauma. ATLS, Advanced trauma life support student course manual. 9th ed. Chicago: American College of Surgeons; 2012.Google Scholar
  35. 35.
    Cotton BA, Jerome R, Collier BR, et al. Guidelines for prehospital fluid resuscitation in the injured patient. J Trauma. 2009;67:389–402. doi: 10.1097/TA.0b013e3181a8b26f.CrossRefPubMedGoogle Scholar
  36. 36.
    Mapstone J, Roberts I, Evans P. Fluid resuscitation strategies: a systematic review of animal trials. J Trauma. 2003;55:571–89. doi: 10.1097/01.TA.0000062968.69867.6F.CrossRefPubMedGoogle Scholar
  37. 37.
    Bickell WH, Wall MJ Jr, Pepe PE, et al. Immediate versus delayed fluid resuscitation for hypotensive patients with penetrating torso injuries. New Engl J Med. 1994;331:1105–9. doi: 10.1056/NEJM199410273311701.CrossRefPubMedGoogle Scholar
  38. 38.
    Dutton RP, Mackenzie CF, Scalea TM. Hypotensive resuscitation during active hemorrhage: impact on in-hospital mortality. J Trauma. 2002;52:1141–6.CrossRefGoogle Scholar
  39. 39.
    Sondeen JL, Coppes VG, Holcomb JB. Blood pressure at which rebleeding occurs after resuscitation in swine with aortic injury. J Trauma. 2003;54:S110–7. doi: 10.1097/01.TA.0000047220.81795.3D.CrossRefPubMedGoogle Scholar
  40. 40.
    •• Schreiber MA, Meier EN, Tisherman SA, et al. A controlled resuscitation strategy is feasible and safe in hypotensive trauma patients: results of a prospective randomized pilot trial. J Trauma Acute Care Surg. 2015;78:687–95. doi: 10.1097/TA.0000000000000600. A randomized trial demonstrating that permissive hypotension may lead to an early improvement in survival in trauma patients CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Scheingraber S, Rehm M, Sehmisch C, et al. Rapid saline infusion produces hyperchloremic acidosis in patients undergoing gynecologic surgery. Anesthesiology. 1999;90:1265–70.CrossRefGoogle Scholar
  42. 42.
    Williams EL, Hildebrand KL, McCormick SA, et al. The effect of intravenous lactated Ringer’s solution versus 0.9% sodium chloride solution on serum osmolality in human volunteers. Anesth Analg. 1999;88:999–1003.PubMedGoogle Scholar
  43. 43.
    Kirkpatrick AW, Chun R, Brown R, et al. Hypothermia and the trauma patient. Can J Surg. 1999;42:333–43.PubMedPubMedCentralGoogle Scholar
  44. 44.
    Jensen SD, Cotton BA. Damage control laparotomy in trauma. Br J Surg. 2017; doi: 10.1002/bjs.10519.
  45. 45.
    Roberts DJ, Ball CG, Feliciano DV, et al. History of the innovation of damage control for management of trauma patients: 1902-2016. Annals Surg. 2017;265:1034–44. doi: 10.1097/SLA.0000000000001803.CrossRefGoogle Scholar
  46. 46.
    Roberts DJ, Ball CG, Kirkpatrick AW. Increased pressure within the abdominal compartment: intra-abdominal hypertension and the abdominal compartment syndrome. Curr Opin Crit Care. 2016;22:174–85. doi: 10.1097/MCC.0000000000000289.CrossRefPubMedGoogle Scholar
  47. 47.
    Malbrain ML, De Laet I. It’s all in the gut: introducing the concept of acute bowel injury and acute intestinal distress syndrome…. Crit Care Med. 2009;37:365–6. doi: 10.1097/CCM.0b013e3181935001.CrossRefPubMedGoogle Scholar
  48. 48.
    Malbrain ML, De Laet I. AIDS is coming to your ICU: be prepared for acute bowel injury and acute intestinal distress syndrome. Intensive Care Med. 2008;34:1565–9. doi: 10.1007/s00134-008-1135-3.CrossRefPubMedGoogle Scholar
  49. 49.
    Roberts DJ, De Waele J, Kirkpatrick AW, et al. Intra-abdominal hypertension and the abdominal compartment syndrome. In: Gravlee GP, Davis RF, Hammon JW, Kussman BD, editors. Surgical Intensive Care Medicine. 3rd ed. Switzerland: Springer International Publishing; 2016.Google Scholar
  50. 50.
    Carr JA. Abdominal compartment syndrome: a decade of progress. J Am Coll Surg. 2013;216:135–46. doi: 10.1016/j.jamcollsurg.2012.09.004.CrossRefPubMedGoogle Scholar
  51. 51.
    Miller PR, Thompson JT, Faler BJ, et al. Late fascial closure in lieu of ventral hernia: the next step in open abdomen management. J Trauma. 2002;53:843–9. doi: 10.1097/01.TA.0000027879.14969.C9.CrossRefPubMedGoogle Scholar
  52. 52.
    Holodinsky JK, Roberts DJ, Ball CG, et al. Risk factors for intra-abdominal hypertension and abdominal compartment syndrome among adult intensive care unit patients: a systematic review and meta-analysis. Crit Care. 2013;17:R249. doi: 10.1186/cc13075.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Pommerening MJ, DuBose JJ, Zielinski MD, et al. Time to first take-back operation predicts successful primary fascial closure in patients undergoing damage control laparotomy. Surgery. 2014;156:431–8. doi: 10.1016/j.surg.2014.04.019.CrossRefPubMedGoogle Scholar
  54. 54.
    Hatch QM, Osterhout LM, Ashraf A, et al. Current use of damage-control laparotomy, closure rates, and predictors of early fascial closure at the first take-back. J Trauma. 2011;70:1429–36. doi: 10.1097/TA.0b013e31821b245a.CrossRefPubMedGoogle Scholar
  55. 55.
    Bradley MJ, Dubose JJ, Scalea TM, et al. Independent predictors of enteric fistula and abdominal sepsis after damage control laparotomy: results from the prospective AAST Open Abdomen registry. JAMA Surg. 2013;148:947–54. doi: 10.1001/jamasurg.2013.2514.CrossRefPubMedGoogle Scholar
  56. 56.
    Brown JB, Cohen MJ, Minei JP, et al. Goal-directed resuscitation in the prehospital setting: a propensity-adjusted analysis. J Trauma Acute Care Surg. 2013;74:1207–12. doi: 10.1097/TA.0b013e31828c44fd.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Rahbar E, Fox EE, del Junco DJ, et al. Early resuscitation intensity as a surrogate for bleeding severity and early mortality in the PROMMTT study. J Trauma Acute Care Surg. 2013;75:S16–23. doi: 10.1097/TA.0b013e31828fa535.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Savage SA, Zarzaur BL, Croce MA, et al. Redefining massive transfusion when every second counts. J Trauma Acute Care Surg. 2013;74:396–400. doi: 10.1097/TA.0b013e31827a3639.CrossRefPubMedGoogle Scholar
  59. 59.
    Malone DL, Hess JR, Fingerhut A. Massive transfusion practices around the globe and a suggestion for a common massive transfusion protocol. J Trauma. 2006;60:S91–6. doi: 10.1097/01.ta.0000199549.80731.e6.CrossRefPubMedGoogle Scholar
  60. 60.
    •• Holcomb JB, Tilley BC, Baraniuk S, et al. Transfusion of plasma, platelets, and red blood cells in a 1:1:1 vs a 1:1:2 ratio and mortality in patients with severe trauma: the PROPPR randomized clinical trial. JAMA. 2015;313:471–82. doi: 10.1001/jama.2015.12. An RCT that highlights that 1:1:1 resuscitation ratios achieves greater hemostasis and leads to fewer bleeding deaths by 24 hours compared to a 1:1:2 ratio CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Cannon JW, Khan MA, Raja AS, et al. Damage control resuscitation in patients with severe traumatic hemorrhage: a practice management guideline from the Eastern Association for the Surgery of Trauma. J Trauma Acute Care Surg. 2017;82:605–17. doi: 10.1097/TA.0000000000001333.CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Pati S, Matijevic N, Doursout MF, et al. Protective effects of fresh frozen plasma on vascular endothelial permeability, coagulation, and resuscitation after hemorrhagic shock are time dependent and diminish between days 0 and 5 after thaw. J Trauma. 2010;69:S55–63. doi: 10.1097/TA.0b013e3181e453d4.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Cardenas JC, Cap AP, Swartz MD, et al. Plasma resuscitation promotes coagulation homeostasis following shock-induced hypercoagulability. Shock. 2016;45:166–73. doi: 10.1097/SHK.0000000000000504.CrossRefPubMedGoogle Scholar
  64. 64.
    Ketchum L, Hess JR, Hiippala S. Indications for early fresh frozen plasma, cryoprecipitate, and platelet transfusion in trauma. J Trauma. 2006;60:S51–8. doi: 10.1097/01.ta.0000199432.88847.0c.CrossRefPubMedGoogle Scholar
  65. 65.
    Holcomb JB, Donathan DP, Cotton BA, et al. Prehospital transfusion of plasma and red blood cells in trauma patients. Prehosp Emerg Care. 2015;19:1–9. doi: 10.3109/10903127.2014.923077.CrossRefPubMedGoogle Scholar
  66. 66.
    Brown JB, Sperry JL, Fombona A, et al. Pre-trauma center red blood cell transfusion is associated with improved early outcomes in air medical trauma patients. J Am Coll Surg. 2015;220:797–808. doi: 10.1016/j.jamcollsurg.2015.01.006.CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Henriksen HH, Rahbar E, Baer LA, et al. Pre-hospital transfusion of plasma in hemorrhaging trauma patients independently improves hemostatic competence and acidosis. Scand J Trauma Resusc Emerg Med. 2016;24:145. doi: 10.1186/s13049-016-0327-z.CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Martinaud C, Ausset S, Deshayes AV, et al. Use of freeze-dried plasma in French intensive care unit in Afghanistan. J Trauma. 2011;71:1761–4. doi: 10.1097/TA.0b013e31822f1285.CrossRefPubMedGoogle Scholar
  69. 69.
    Glassberg E, Nadler R, Gendler S, et al. Freeze-dried plasma at the point of injury: from concept to doctrine. Shock. 2013;40:444–50. doi: 10.1097/SHK.0000000000000047.CrossRefPubMedGoogle Scholar
  70. 70.
    Cantle PM, Cotton BA. Prediction of massive transfusion in trauma. Crit Care Clin. 2017;33:71–84. doi: 10.1016/j.ccc.2016.08.002.CrossRefPubMedGoogle Scholar
  71. 71.
    Nunez TC, Voskresensky IV, Dossett LA, et al. Early prediction of massive transfusion in trauma: simple as ABC (assessment of blood consumption)? J Trauma. 2009;66:346–52. doi: 10.1097/TA.0b013e3181961c35.CrossRefPubMedGoogle Scholar
  72. 72.
    Cotton BA, Dossett LA, Au BK, et al. Room for (performance) improvement: provider-related factors associated with poor outcomes in massive transfusion. J Trauma. 2009;67:1004–12. doi: 10.1097/TA.0b013e3181bcb2a8.CrossRefPubMedGoogle Scholar
  73. 73.
    Gunter OL Jr, Au BK, Isbell JM, et al. Optimizing outcomes in damage control resuscitation: identifying blood product ratios associated with improved survival. J Trauma. 2008;65:527–34. doi: 10.1097/TA.0b013e3181826ddf.CrossRefPubMedGoogle Scholar
  74. 74.
    Radwan ZA, Bai Y, Matijevic N, et al. An emergency department thawed plasma protocol for severely injured patients. JAMA Surgery. 2013;148:170–5. doi: 10.1001/jamasurgery.2013.414.CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Cotton BA, Reddy N, Hatch QM, et al. Damage control resuscitation is associated with a reduction in resuscitation volumes and improvement in survival in 390 damage control laparotomy patients. Ann Surg. 2011;254:598–605. doi: 10.1097/SLA.0b013e318230089e.CrossRefPubMedGoogle Scholar
  76. 76.
    Johansson PI, Stensballe J, Oliveri R, et al. How I treat patients with massive hemorrhage. Blood. 2014;124:3052–8. doi: 10.1182/blood-2014-05-575340.CrossRefPubMedGoogle Scholar
  77. 77.
    Holcomb JB, del Junco DJ, Fox EE, PROMMTT Study Group, et al. The prospective, observational, multicenter, major trauma transfusion (PROMMTT) study: comparative effectiveness of a time-varying treatment with competing risks. JAMA Surgery. 2013;148:127–36. doi: 10.1001/2013.jamasurg.387.CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Joint Committee to Create a National Policy to Enhance Survivability From Intentional Mass Casualty Shooting Events. Improving survival from active shooter events: The Hartford Consensus. American College of Surgeons. 2013.Google Scholar
  79. 79.
    Jacobs, LM and Joint Committee to Create a National Policy to Enhance Survivability From Intentional Mass Casualty Shooting Events. The Hartford Consensus III: implementation of bleeding control. American College of Surgeons. 2015.Google Scholar
  80. 80.
    Spanjersberg WR, Knops SP, Schep NWL, et al. Effectiveness and complications of pelvic circumferential compression devices in patients with unstable pelvic fractures: a systematic review of literature. Injury. 2009;40:1031–5. doi: 10.1016/j.injury.2009.06.164.CrossRefPubMedGoogle Scholar
  81. 81.
    Croce MA, Magnotti LJ, Savage SA, et al. Emergent pelvic fixation in patients with exsanguinating pelvic fractures. J Am Coll Surg. 2007;204:935–9. doi: 10.1016/j.jamcollsurg.2007.01.059.CrossRefPubMedGoogle Scholar
  82. 82.
    Krieg JC, Mohr M, Ellis TJ, et al. Emergent stabilization of pelvic ring injuries by controlled circumferential compression: a clinical trial. J Trauma. 2005;59:659–64.CrossRefGoogle Scholar
  83. 83.
    Eastridge BJ, Mabry RL, Seguin P, et al. Death on the battlefield (2001–2011): implications for the future of combat casualty care. J Trauma Acute Care Surg. 2012;73:S431–7. doi: 10.1097/TA.0b013e3182755dcc.CrossRefPubMedGoogle Scholar
  84. 84.
    Kragh JF Jr, Walters TJ, Baer DG, et al. Survival with emergency tourniquet use to stop bleeding in major limb trauma. Ann Surg. 2009;249:1–7. doi: 10.1097/SLA.0b013e31818842ba.CrossRefPubMedGoogle Scholar
  85. 85.
    Kragh JF Jr, Walters TJ, Baer DG, et al. Practical use of emergency tourniquets to stop bleeding in major limb trauma. J Trauma. 2008;64:S38–50. doi: 10.1097/TA.0b013e31816086b1.CrossRefPubMedGoogle Scholar
  86. 86.
    Lee C, Porter KM, Hodgetts TJ. Tourniquet use in the civilian prehospital setting. Emerg Med J. 2007;24:584–7. doi: 10.1136/emj.2007.046359.CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Doyle GS, Taillac PP. Tourniquets: a review of current use with proposals for expanded prehospital use. Prehosp Emerg Care. 2008;12:241–56. doi: 10.1080/10903120801907570.CrossRefPubMedGoogle Scholar
  88. 88.
    Scerbo MH, Mumm JP, Gates K, et al. Safety and appropriateness of tourniquets in 105 civilians. Prehosp Emerg Care. 2016;20:712–22. doi: 10.1080/10903127.2016.1182606.CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Seamon MJ, Haut ER, Van Arendonk K, et al. An evidence-based approach to patient selection for emergency department thoracotomy: a practice management guideline from the Eastern Association for the Surgery of Trauma. J Trauma Acute Care Surg. 2015;79:159–73. doi: 10.1097/TA.0000000000000648.CrossRefPubMedGoogle Scholar
  90. 90.
    Stannard A, Eliason JL, Rasmussen TE. Resuscitative endovascular balloon occlusion of the aorta (REBOA) as an adjunct for hemorrhagic shock. J Trauma. 2011;71:1869–72. doi: 10.1097/TA.0b013e31823fe90c.CrossRefPubMedGoogle Scholar
  91. 91.
    Brenner ML, Moore LJ, DuBose JJ, et al. A clinical series of resuscitative endovascular balloon occlusion of the aorta for hemorrhage control and resuscitation. J Trauma Acute Care Surg. 2013;75:506–11. doi: 10.1097/TA.0b013e31829e5416.CrossRefPubMedGoogle Scholar
  92. 92.
    Moore LJ, Brenner M, Kozar RA, et al. Implementation of resuscitative endovascular balloon occlusion of the aorta as an alternative to resuscitative thoracotomy for noncompressible truncal hemorrhage. J Trauma Acute Care Surg. 2015;79:523–30. doi: 10.1097/TA.0000000000000809.CrossRefPubMedGoogle Scholar
  93. 93.
    Sadek S, Lockey DJ, Lendrum RA, et al. Resuscitative endovascular balloon occlusion of the aorta (REBOA) in the pre-hospital setting: an additional resuscitation option for uncontrolled catastrophic haemorrhage. Resuscitation. 2016;107:135–8. doi: 10.1016/j.resuscitation.2016.06.029.CrossRefPubMedGoogle Scholar
  94. 94.
    Smith A, Ouellet JF, Niven D, et al. Timeliness in obtaining emergent percutaneous procedures in severely injured patients: how long is too long and should we create quality assurance guidelines? Can J Surg. 2013;56:E154–7.CrossRefGoogle Scholar
  95. 95.
    Schwartz DA, Medina M, Cotton BA, et al. Are we delivering two standards of care for pelvic trauma? Availability of angioembolization after hours and on weekends increases time to therapeutic intervention. J Trauma Acute Care Surg. 2014;76:134–9. doi: 10.1097/TA.0b013e3182ab0cfc.CrossRefPubMedGoogle Scholar
  96. 96.
    Holcomb JB, Fox EE, Scalea TM, et al. Current opinion on catheter-based hemorrhage control in trauma patients. J Trauma Acute Care Surg. 2014;76:888–93. doi: 10.1097/TA.0000000000000133.CrossRefPubMedGoogle Scholar
  97. 97.
    Roberts DJ, Bobrovitz N, Zygun DA, et al. Indications for use of damage control surgery and damage control interventions in civilian trauma patients: a scoping review. J Trauma Acute Care Surg. 2015;78:1187–96. doi: 10.1097/TA.0000000000000647.CrossRefPubMedGoogle Scholar
  98. 98.
    Roberts DJ, Bobrovitz N, Zygun DA, et al. Indications for use of thoracic, abdominal, pelvic, and vascular damage control interventions in trauma patients: a content analysis and expert appropriateness rating study. J Trauma Acute Care Surg. 2015;79:568–79. doi: 10.1097/TA.0000000000000821.CrossRefPubMedGoogle Scholar
  99. 99.
    Roberts DJ, Bobrovitz N, Zygun DA, et al. Indications for use of damage control surgery in civilian trauma patients: a content analysis and expert appropriateness rating study. Ann Surg. 2016;263:1018–27. doi: 10.1097/SLA.0000000000001347.CrossRefPubMedGoogle Scholar
  100. 100.
    Roberts DJ, Zygun DA, Faris PD, et al. Opinions of practicing surgeons on the appropriateness of published indications for use of damage control surgery in trauma patients: an international cross-sectional survey. J Am Coll Surg. 2016;223:515–29. doi: 10.1016/j.jamcollsurg.2016.06.002.CrossRefPubMedGoogle Scholar
  101. 101.
    Harvin JA, Kao LS, Liang MK, et al. Decreasing the use of damage control laparotomy in trauma: a quality improvement project. J Am Coll Surg 2017. Accepted Manuscript. Doi:  10.1016/j.jamcollsurg.2017.04.010.
  102. 102.
    Taylor JR, Adams SD, McNutt MK, et al. Indication-specific outcomes for damage control laparotomy: a descriptive study. Am J Surg 2017. Submitted.Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Paul M. Cantle
    • 1
  • Derek J. Roberts
    • 2
  • John B. Holcomb
    • 1
    Email author
  1. 1.Center for Translational Injury Research, Department of SurgeryMcGovern School of Medicine, UT HealthHoustonUSA
  2. 2.Department of SurgeryUniversity of CalgaryCalgaryCanada

Personalised recommendations