Advertisement

Environmental Processes

, Volume 6, Issue 1, pp 309–319 | Cite as

Predicting Daily Pan Evaporation (Epan) from Dam Reservoirs in the Mediterranean Regions of Algeria: OPELM vs OSELM

  • Abderrazek Sebbar
  • Salim HeddamEmail author
  • Lakhdar Djemili
Short Communication
  • 43 Downloads

Abstract

In the present study, we propose the application of two artificial intelligence models, namely: (i) the optimally pruned extreme learning machine (OPELM); and (ii) the online sequential extreme learning machine (OSELM) models, for estimating daily pan evaporation (Epan). The two models were developed and compared using four climatic data collected at two stations: Ain Dalia and Zit Emba. The maximum and minimum temperatures (Tmax, Tmin), wind speed (U2), relative humidity (RH %) and Epan data were used as inputs to the models. Pan evaporation Epan was directly measured using Class A evaporation pan. The results show that the two models provided different results at the two stations: the OPELM worked well at Ain Dalia while OSELM was more accurate at Zit Emba. More importantly, the inclusion of the periodicity did not lead to a significant improvement in the accuracy of the models. OSELM validation results, with a coefficient of correlation R = 0.872, a root mean square error RMSE =1.698 mm, and a mean absolute error MAE = 1.311 mm outperformed OPELM (R = 0.853, RMSE = 1.813 mm and MAE = 1.403 mm) at Zit Emba. In addition, at Ain Dalia, the results indicate that OPELM model provided slightly higher prediction accuracy compared to the OSELM model (R = 0.808 against 0.800; RMSE = 1.447 mm against 1.471 mm; MAE = 1.091 mm against 1.084 mm). This work demonstrates the ability of the OPELM and OSELM approaches for estimating daily Epan using easily measured climatic variables.

Keywords

Modelling Epan Climatic variables Algeria, extreme learning machine OPELM OSELM 

Notes

References

  1. Allawi MF, El-Shafie A (2016) Utilizing RBF-NN and ANFIS methods for multi-lead ahead prediction model of evaporation from reservoir. Water Resour Manag 30(13):4773–4788.  https://doi.org/10.1007/s11269-016-1452-1 CrossRefGoogle Scholar
  2. Broomhead DS, Lowe D (1988) Multivariable functional interpolation and adaptive networks. Complex Syst 2:321–355Google Scholar
  3. Deo RC, Samui P, Kim D (2016) Estimation of monthly evaporative loss using relevance vector machine, extreme learning machine and multivariate adaptive regression spline models. Stoch Env Res Risk A 30(6):1769–1784.  https://doi.org/10.1007/s00477-015-1153-y CrossRefGoogle Scholar
  4. Eray O, Mert C, Kisi O (2018) Comparison of multi-gene genetic programming and dynamic evolving neural-fuzzy inference system in modeling pan evaporation. Hydrol Res 49(4):1221–1233.  https://doi.org/10.2166/nh.2017.076. CrossRefGoogle Scholar
  5. Feng Y, Jia Y, Zhang Q, Gong D, Cui N (2018) National-scale assessment of pan evaporation models across different climatic zones of China. J Hydrol 564:314–328.  https://doi.org/10.1016/j.jhydrol.2018.07.013 CrossRefGoogle Scholar
  6. Flammini A, Corradini C, Morbidelli R, Saltalippi C, Picciafuoco T, Giráldez JV (2018) Experimental analyses of the evaporation dynamics in bare soils under natural conditions. Water Resour Manag 32(3):1153–1166.  https://doi.org/10.1007/s11269-017-1860-x CrossRefGoogle Scholar
  7. Ghorbani MA, Deo RC, Yaseen ZM, Kashani MH, Mohammadi B (2018) Pan evaporation prediction using a hybrid multilayer perceptron-firefly algorithm (MLP-FFA) model: case study in North Iran. Theor Appl Climatol 133(3–4):1119–1131.  https://doi.org/10.1007/s00704-017-2244-0 CrossRefGoogle Scholar
  8. Huang GB, Chen L, Siew CK (2006a) Universal approximation using incremental constructive feedforward networks with random hidden nodes. IEEE Trans Neural Netw 17(4):879–892.  https://doi.org/10.1109/TNN.2006.875977 CrossRefGoogle Scholar
  9. Huang GB, Zhu QY, Siew CK (2006b) Extreme learning machine: theory and applications. Neurocomputing 70(1–3):489–501.  https://doi.org/10.1016/j.neucom.2005.12.126 CrossRefGoogle Scholar
  10. Huang G, Huang GB, Song S, You K (2015) Trends in extreme learning machines: a review. Neural Netw 61:32–48.  https://doi.org/10.1016/j.neunet.2014.10.001 CrossRefGoogle Scholar
  11. Keshtegar B, Kisi O (2017) Modified response-surface method: new approach for modeling pan evaporation. J Hydrol Eng ASCE 22(10):04017045.  https://doi.org/10.1061/(ASCE)HE.1943-5584.0001541 CrossRefGoogle Scholar
  12. Khosravi K, Mao L, Kisi O, Yaseen ZM, Shahid S (2018) Quantifying hourly suspended sediment load using data mining models: case study of a glacierized Andean catchment in Chile. J Hydrol 567:165–179.  https://doi.org/10.1016/j.jhydrol.2018.10.015 CrossRefGoogle Scholar
  13. Kim S, Shiri J, Kisi O (2012) Pan evaporation modeling using neural computing approach for different climatic zones. Water Resour Manag 27:3231–3249.  https://doi.org/10.1007/s11269-012-0069-2 CrossRefGoogle Scholar
  14. Kim S, Shiri J, Kisi O, Singh VP (2013) Estimating daily pan evaporation using different data-driven methods and lag-time patterns. Water Resour Manag 27:2267–2286.  https://doi.org/10.1007/s11269-013-0287-2 CrossRefGoogle Scholar
  15. Kisi O, Yaseen ZM (2019) The potential of hybrid evolutionary fuzzy intelligence model for suspended sediment concentration prediction. CATENA 174:11–23.  https://doi.org/10.1016/j.catena.2018.10.047 CrossRefGoogle Scholar
  16. Liang NY, Huang GB, Saratchandran P, Sundararajan N (2006) A fast and accurate online sequential learning algorithm for feedforward networks. IEEE Trans Neural Netw 17:1411–1423.  https://doi.org/10.1109/TNN.2006.880583 CrossRefGoogle Scholar
  17. Lima AR, Cannon AJ, Hsieh WW (2015) Nonlinear regression in environmental sciences using extreme learning machines: a comparative evaluation. Environ Model Softw 73:175–188.  https://doi.org/10.1016/j.envsoft.2015.08.002 CrossRefGoogle Scholar
  18. Lima AR, Cannon AJ, Hsieh WW (2016) Forecasting daily streamflow using online sequential extreme learning machines. J Hydrol 537:431–443.  https://doi.org/10.1016/j.jhydrol.2016.03.017 CrossRefGoogle Scholar
  19. Limjirakan S, Limsakul A (2012) Trends in Thailand pan evaporation from 1970 to 2007. Atmos Res 108:122–127.  https://doi.org/10.1016/j.atmosres.2012.01.010 CrossRefGoogle Scholar
  20. Liu N, Wang H (2010) Ensemble based extreme learning machine. IEEE Signal Process Lett 17(7):754–757.  https://doi.org/10.1109/LSP.2010.2053356 Google Scholar
  21. Lu X, Ju Y, Wu L, Fan J, Zhang F, Li Z (2018) Daily pan evaporation modeling from local and cross-station data using three tree-based machine learning models. J Hydrol 566:668–684.  https://doi.org/10.1016/j.jhydrol.2018.09.055 CrossRefGoogle Scholar
  22. Mao W, He L, Yan Y, Wang J (2017) Online sequential prediction of bearings imbalanced fault diagnosis by extreme learning machine. Mech Syst Signal Process 83:450–473.  https://doi.org/10.1016/j.ymssp.2016.06.024 CrossRefGoogle Scholar
  23. Miche Y, Sorjamaa A, Lendasse A (2008) OP-ELM: theory, experiments and a toolbox. In: Proceedings of the International Conference on Artificial Neural Networks. Lecture Notes in Computer Science, vol 5163, Prague, Czech Republic, September 3–6, pp. 145–154.  https://doi.org/10.1007/978-3-540-87536-9_16
  24. Miche Y, Sorjamaa A, Bas P, Simula O, Jutten C, Lendasse A (2010) OP-ELM: optimally pruned extreme learning machine. IEEE Trans Neural Netw 21(1):158–162.  https://doi.org/10.1109/TNN.2009.2036259 CrossRefGoogle Scholar
  25. Pao YH, Park GH, Sobajic DJ (1994) Learning and generalization characteristics of the random vector functional-link net. Neurocomputing 6:163–180CrossRefGoogle Scholar
  26. Rezaie-Balf M, Kisi O, Chua LH (2018) Application of ensemble empirical mode decomposition based on machine learning methodologies in forecasting monthly pan evaporation. Hydrol Res.  https://doi.org/10.2166/nh.2018.050
  27. Sanikhani H, Deo RC, Yaseen ZM, Eray O, Kisi O (2018a) Non-tuned data intelligent model for soil temperature estimation: a new approach. Geoderma 330:52–64.  https://doi.org/10.1016/j.geoderma.2018.05.030 CrossRefGoogle Scholar
  28. Sanikhani H, Deo RC, Samui P, Kisi O, Mert C, Mirabbasi R, Gavili S, Yaseen ZM (2018b) Survey of different data-intelligent modeling strategies for forecasting air temperature using geographic information as model predictors. Comput Electron Agric 152:242–260.  https://doi.org/10.1016/j.compag.2018.07.008 CrossRefGoogle Scholar
  29. Sanikhani H, Kisi O, Maroufpoor E, Yaseen ZM (2018c) Temperature-based modeling of reference evapotranspiration using several artificial intelligence models: application of different modeling scenarios. Theor Appl Climatol:1–14.  https://doi.org/10.1007/s00704-018-2390-z
  30. Schmidt WF, Kraaijveld M, Duin RP (1992) Feedforward neural networks with random weights. In: Proceedings 11th IAPR International Conference on Pattern Recognition. Vol.II. Conference B: Pattern Recognition Methodology, IEEE, 30 August-3 September. The Hague, Netherlands. pp. 1–4. http://ieeexplore.ieee.org/abstract/document/201708. Accessed 10 Jan 2018
  31. Similä T, Tikka J (2005) Multiresponse sparse regression with application to multidimensional scaling. In: Duch W, Kacprzyk J, Oja E, Zadrożny S (eds) Artificial Neural Networks: Formal Models and their Applications-ICANN 2005. ICANN 2005. Lecture Notes in Computer Science, vol 3697. Springer, Berlin.  https://doi.org/10.1007/11550907_16
  32. Sun Z, Ouyang Z, Zhao J, Li S, Zhang X, Ren W (2018) Recent rebound in observational large-pan evaporation driven by heat wave and droughts by the lower Yellow River. J Hydrol 565:237–247.  https://doi.org/10.1016/j.jhydrol.2018.08.014 CrossRefGoogle Scholar
  33. Wang N, Er MJ, Han M (2014) Parsimonious extreme learning machine using recursive orthogonal least squares. IEEE Trans Neural Netw Learn Syst 25(10):1828–1841.  https://doi.org/10.1109/TNNLS.2013.2296048 CrossRefGoogle Scholar
  34. Wang L, Niu Z, Kisi O, Li C, Yu D (2017) Pan evaporation modeling using four different heuristic approaches. Comput Electron Agric 140:203–213.  https://doi.org/10.1016/j.compag.2017.05.036 CrossRefGoogle Scholar
  35. Wang T, Sun F, Xia J, Liu W, Sang Y, Wang H (2018) An experimental detrending approach to attributing change of pan evaporation in comparison with the traditional partial differential method. J Hydrol 564:501–508.  https://doi.org/10.1016/j.jhydrol.2018.07.021 CrossRefGoogle Scholar
  36. Yadav B, Ch S, Mathur S, Adamowski J (2016) Discharge forecasting using an online sequential extreme learning machine (OS-ELM) model: a case study in Neckar River, Germany. Measurement 92:433–445.  https://doi.org/10.1016/j.measurement.2016.06.042 CrossRefGoogle Scholar
  37. Yaseen ZM, Jaafar O, Deo RC, Kisi O, Adamowski J, Quilty J, El-Shafie A (2016) Stream-flow forecasting using extreme learning machines: a case study in a semi-arid region in Iraq. J Hydrol 542:603–614.  https://doi.org/10.1016/j.jhydrol.2016.09.035 CrossRefGoogle Scholar
  38. Yaseen ZM, Allawi MF, Yousif AA, Jaafar O, Hamzah FM, El-Shafie A (2018a) Non-tuned machine learning approach for hydrological time series forecasting. Neural Comput & Applic 30(5):1479–1491.  https://doi.org/10.1007/s00521-016-2763-0 CrossRefGoogle Scholar
  39. Yaseen ZM, Awadh SM, Sharafati A, Shahid S (2018b) Complementary data-intelligence model for river flow simulation. J Hydrol 567:180–190.  https://doi.org/10.1016/j.jhydrol.2018.10.020 CrossRefGoogle Scholar
  40. Yaseen ZM, Deo RC, Hilal A, Abd AM, Bueno LC, Salcedo-Sanz S, Nehdi ML (2018c) Predicting compressive strength of lightweight foamed concrete using extreme learning machine model. Adv Eng Softw 115:112–125.  https://doi.org/10.1016/j.advengsoft.2017.09.004 CrossRefGoogle Scholar
  41. Yaseen ZM, Tran MT, Kim S, Bakhshpoori T, Deo RC (2018d) Shear strength prediction of steel fiber reinforced concrete beam using hybrid intelligence models: a new approach. Eng Struct 177:244–255.  https://doi.org/10.1016/j.engstruct.2018.09.074 CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Soil and Hydraulics Research Laboratory, Faculty of Engineering Sciences, Hydraulics DepartmentUniversity Badji-Mokhtar AnnabaAnnabaAlgeria
  2. 2.Faculty of Science, Agronomy DepartmentHydraulics Division UniversitySkikdaAlgeria
  3. 3.Research Laboratory of Natural Resources and Adjusting, Faculty of Engineering Sciences, Hydraulics DepartmentUniversity BADJI-MOKHTAR AnnabaAnnabaAlgeria

Personalised recommendations