Advertisement

Journal of Computers in Education

, Volume 5, Issue 2, pp 243–257 | Cite as

Attention please! Enhanced attention control abilities compensate for instructional impairments in multimedia learning

  • Maria WirzbergerEmail author
  • Günter Daniel Rey
Article

Abstract

Learners exposed to multimedia learning contexts have to deal with a variety of visual stimuli, demanding a conducive design of learning material to maintain limitations in attentional resources. Within the current study, effects and constraints arising from two selected impairing features are investigated in more detail within a computer-based learning task on factor analysis. A sample of 53 students received a combination of textual and pictorial elements that explained the topic, while impaired attention was systematically induced in a 2 × 2 factorial between-subjects design by interrupting system-notifications (with vs. without) and seductive text passages (with vs. without). Learners’ ability for controlled attention was assessed with a standardized psychological attention inventory. Approaching the results, learners receiving seductive text passages spent significantly more time on the learning material. In addition, a moderation effect of attention control abilities on the relationship between interruptions and retention performance resulted. Explanations for the obtained findings are discussed referring to mechanisms of compensation, load, and activation.

Keywords

Multimedia learning Controlled attention Interruptions Seductive details Learning performance 

References

  1. American Psychological Association. (2010). Ethical principles and code of conduct for psychologists. Washington: American Psychological Association.Google Scholar
  2. Backhaus, K., Erichson, B., Plinke, W., & Weiber, R. (2006). Multivariate Analysemethoden. Eine anwendungsorientierte Einführung [Multivariate methods of analysis. An application-oriented introduction] (11th ed.). Berlin: Springer.Google Scholar
  3. Bortz, J. (2005). Statistik für Human- und Sozialwissenschaftler [Statistics for behavioral and social scientists] (6th ed.). Berlin: Springer.Google Scholar
  4. Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Hillsdale, NJ: Erlbaum.Google Scholar
  5. Conway, A. R. A., & Kane, M. J. (2001). Capacity, control and conflict: An individual differences perspective on attentional capture. In C. L. Folk & B. S. Gibson (Eds.), Attraction, distraction and action. Multiple perspectives on attentional capture. Amsterdam: Elsevier Science.Google Scholar
  6. Dienes, Z. (2014). Using Bayes to get the most out of non-significant results. Frontiers in Psychology, 5, 781.  https://doi.org/10.3389/fpsyg.2014.00781.CrossRefGoogle Scholar
  7. Drummond, S. P., Brown, G. G., Gillin, J. C., Stricker, J. L., Wong, E. C., & Buxton, R. B. (2000). Altered brain response to verbal learning following sleep deprivation. Nature, 403, 655–657.  https://doi.org/10.1038/35001068.CrossRefGoogle Scholar
  8. Einöther, S. J. L., & Giesbrecht, T. (2013). Caffeine as an attention enhancer: reviewing existing assumptions. Psychopharmacology (Berl), 225, 251–274.  https://doi.org/10.1007/s00213-012-2917-4.CrossRefGoogle Scholar
  9. Gerě, I., & Jaušovec, N. (1999). Multimedia: Differences in cognitive processes observed with EEG. Educational Technology Research and Development, 47, 5–14.  https://doi.org/10.1007/BF02299630.CrossRefGoogle Scholar
  10. Harp, S. F., & Mayer, R. E. (1998). How seductive details do their damage: A theory of cognitive interest in science learning. Journal of Educational Psychology, 90, 414–434.  https://doi.org/10.1037/0022-0663.90.3.414.CrossRefGoogle Scholar
  11. Irtel, H. (2007). PXLab: The Psychological Experiments Laboratory (Version 2.1.19) [Computer software]. Mannheim, Germany: University of Mannheim, Retrieved February 10th, 2016 from http://www.pxlab.de.
  12. Jeffreys, H. (1961). Theory of probability (3rd ed.). New York: Oxford University Press.Google Scholar
  13. Kane, M. J., Bleckeley, M. K., Conway, A. R. A., & Engle, R. W. (2001). A controlled-attention view of working-memory capacity. Journal of Experimental Psychology: General, 130, 169–183.  https://doi.org/10.1037/0096-3445.130.2.169.CrossRefGoogle Scholar
  14. Killgore, W. D. S. (2010). Effects of sleep deprivation on cognition. In G. A. Kerkhof & H. P. A. Van Dongen (Eds.), Progress in brain research (Vol. 185). Amsterdam: Elsevier Science.Google Scholar
  15. Konstantinou, N., Beal, E., King, J.-R., & Lavie, N. (2014). Working memory load and distraction: dissociable effects of visual maintenance and cognitive control. Attention, Perception, & Psychophysics, 76, 1985–1997.  https://doi.org/10.3758/s13414-014-0742-z.CrossRefGoogle Scholar
  16. Lavie, N. (2010). Attention, distraction, and cognitive control under load. Current Directions in Psychological Science, 19, 143–148.  https://doi.org/10.1177/0963721410370295.CrossRefGoogle Scholar
  17. Lavie, N., Hirst, A., de Fockert, J. W., & Viding, E. (2004). Load theory of selective attention and cognitive control. Journal of Experimental Psychology: General, 133, 339–354.  https://doi.org/10.1037/0096-3445.133.3.339.CrossRefGoogle Scholar
  18. Lee, M. D., & Wagenmakers, E. J. (2014). Bayesian cognitive modeling: A practical course. Cambridge, MA: Cambridge University Press.Google Scholar
  19. Mayer, R. E. (Ed.). (2014). The Cambridge handbook of multimedia learning (2nd ed.). Cambridge, MA: Cambridge University Press.Google Scholar
  20. Moosbrugger, H., & Oehlschlägel, J. (2011). Frankfurter Aufmerksamkeits-Inventar 2 (FAIR-2) [Frankfurt Attention Inventory (2nd ed.). Bern: Huber.Google Scholar
  21. Mueller, P. A., & Oppenheimer, D. M. (2014). The pen is mightier than the keyboard advantages of longhand over laptop note taking. Psychological Science, 25, 1159–1168.  https://doi.org/10.1177/0956797614524581.CrossRefGoogle Scholar
  22. Posner, M. I., & Boies, S. J. (1971). Components of attention. Psychological Review, 78, 391–408.  https://doi.org/10.1037/h0031333.CrossRefGoogle Scholar
  23. Rey, G. D. (2011). Seductive details in multimedia messages. Journal of Educational Multimedia and Hypermedia, 20, 283–314.Google Scholar
  24. Rey, G. D. (2012). A review of research and a meta-analysis of the seductive detail effect. Educational Research Review, 7, 216–237.  https://doi.org/10.1016/j.edurev.2012.05.003.CrossRefGoogle Scholar
  25. Rey, G. D. (2014). Seductive details and attention distraction—An eye tracker experiment. Computers in Human Behavior, 32, 133–144.  https://doi.org/10.1016/j.chb.2013.11.017.CrossRefGoogle Scholar
  26. Sanchez, C. A., & Wiley, J. (2006). An examination of the seductive detail effect in terms of working memory capacity. Memory & Cognition, 34, 344–355.  https://doi.org/10.3758/BF03193412.CrossRefGoogle Scholar
  27. Styles, E. A. (1997). The psychology of attention. Hove, East Sussex: Psychology Press.CrossRefGoogle Scholar
  28. Wickens, C. D., Hollands, J. G., Banbury, S., & Parasuraman, R. (2013). Engineering psychology and human performance (4th ed.). Upper Saddle River, NJ: Pearson Education.Google Scholar
  29. Wilson, M. (2002). Six views of embodied cognition. Psychonomic Bulletin & Review, 9, 625–636.  https://doi.org/10.3758/BF0319632.CrossRefGoogle Scholar

Copyright information

© Beijing Normal University 2018

Authors and Affiliations

  1. 1.Psychology of Learning with Digital Media, Institute for Media Research, Faculty of HumanitiesTU ChemnitzChemnitzGermany

Personalised recommendations