Contemporary School Psychology

, Volume 22, Issue 1, pp 90–104 | Cite as

Factor Structure of the 10 WISC-V Primary Subtests Across Four Standardization Age Groups

  • Stefan C. Dombrowski
  • Gary L. Canivez
  • Marley W. Watkins
Article

Abstract

The Wechsler Intelligence Scale for Children-Fifth Edition (WISC-V; Wechsler 2014a) Technical and Interpretation Manual (Wechsler 2014b) dedicated only a single page to discussing the 10-subtest WISC-V primary battery across the entire 6 to 16 age range. Users are left to extrapolate the structure of the 10-subtest battery from the 16-subtest structure. Essentially, the structure of the 10-subtest WISC-V primary battery remains largely uninvestigated particularly at various points across the developmental period. Using principal axis factoring and the Schmid–Leiman orthogonalization procedure, the 10-subtest WISC-V primary structure was examined across four standardization sample age groups (ages 6–8, 9–11, 12–14, 15–16). Forced extraction of the publisher’s promoted five factors resulted in a trivial fifth factor at all ages except 15–16. At ages 6 to 14, the results suggested that the WISC-V contains the same four first-order factors as the prior WISC-IV (Verbal Comprehension, Perceptual Reasoning, Working Memory, Processing Speed; Wechsler 2003). Results suggest interpretation of the Visual Spatial and Fluid Reasoning indexes at ages 6 to 14 may be inappropriate due to the fusion of the Visual Spatial and Fluid Reasoning subtests. At ages 15–16, the five-factor structure was supported. Results also indicated that the WISC-V provides strong measurement of general intelligence and clinical interpretation should reside primarily at that level. Regardless of whether a four- or five-factor index structure is emphasized, the group factors reflecting the WISC-V indices do not account for a sufficient proportion of variance to warrant primary interpretive emphasis.

Keywords

WISC-V Exploratory factor analysis Factor extraction criteria Schmid–Leiman higher-order analysis Structural validity 

Notes

Compliance with Ethical Standards

Conflict of Interest

Stefan Dombrowski, Gary Canivez, and Marley Watkins declare that they have no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Supplementary material

40688_2017_125_MOESM1_ESM.docx (86 kb)
ESM 1 (DOCX 86 kb)

References

  1. Adams, K. M. (2000). Practical and ethical issues pertaining to test revisions. Psychological Assessment, 12, 281–286. doi: 10.1037/1040-3590.12.3.281.
  2. Alexandre, J. S., Morin, A., Arens, A. K., Antoine, T., & Herve, C. (2015). Exploring sources of construct-relevant multidimensionality in psychiatric measurement: a tutorial and illustration using the composite scale of morningness. International Journal of Methods in Psychiatric Research . doi: 10.1002/mpr.1485.Advanced online publicationGoogle Scholar
  3. Beaujean, A. A. (2015a). John Carroll’s views on intelligence: bi-factor vs. higher-order models. Journal of Intelligence, 3, 121–136. doi: 10.3390/jintelligence3040121.CrossRefGoogle Scholar
  4. Beaujean, A. A. (2015b). Adopting a new test edition: psychometric and practical considerations. Research and Practice in the Schools, 3, 51–57.Google Scholar
  5. Beaujean, A. A. (2016). Reproducing the Wechsler Intelligence Scale for Children-Fifth Edition: factor model results. Journal of Psychoeducational Assessment, 34, 404–408. doi: 10.1177/0734282916642679.CrossRefGoogle Scholar
  6. Bodin, D., Pardini, D. A., Burns, T. G., & Stevens, A. B. (2009). Higher order factor structure of the WISC–IV in a clinical neuropsychological sample. Child Neuropsychology, 15, 417–424.CrossRefPubMedPubMedCentralGoogle Scholar
  7. Brown, T. A. (2015). Confirmatory factor analysis for applied research (2nd ed.). New York: Guilford.Google Scholar
  8. Brunner, M., Nagy, G., & Wilhelm, O. (2012). A tutorial on hierarchically structured constructs. Journal of Personality, 80, 796–846. doi: 10.1111/j.1467–6494.2011.00749.x.CrossRefPubMedGoogle Scholar
  9. Canivez, G. L. (2008). Orthogonal higher-order factor structure of the Stanford–Binet Intelligence Scales for children and adolescents. School Psychology Quarterly, 23, 533–541. doi: 10.1037/a0012884.CrossRefGoogle Scholar
  10. Canivez, G. L. (2010). Review of the Wechsler Adult Intelligence Test–Fourth Edition. In R. A. Spies, J. F. Carlson, & K. F. Geisinger (Eds.), The eighteenth mental measurements yearbook (pp. 684–688). Lincoln: Buros Institute of Mental Measurements.Google Scholar
  11. Canivez, G. L. (2014a). Review of the Wechsler Preschool and Primary Scale of Intelligence–Fourth Edition. In J. F. Carlson, K. F. Geisinger, & J. L. Jonson (Eds.), The nineteenth mental measurements yearbook (pp. 732–737). Lincoln: Buros Institute of Mental Measurements.Google Scholar
  12. Canivez, G. L. (2014b). Construct validity of the WISC–IV with a referred sample: direct versus indirect hierarchical structures. School Psychology Quarterly, 29, 38–51. doi: 10.1037/spq0000032.CrossRefPubMedGoogle Scholar
  13. Canivez, G. L. (2016). Bifactor modeling in construct validation of multifactored tests: implications for understanding multidimensional constructs and test interpretation. In K. Schweizer & C. DiStefano (Eds.), Principles and methods of test construction: standards and recent advancements (pp. 247–271). Gottingen: Hogrefe.Google Scholar
  14. Canivez, G. L., & Kush, J. C. (2013). WISC–IV and WAIS–IV structural validity: alternate methods, alternate results. Commentary on Weiss et al. (2013a) and Weiss et al. (2013b). Journal of Psychoeducational Assessment, 31, 157–169. doi: 10.1177/0734282913478036.CrossRefGoogle Scholar
  15. Canivez, G. L., & McGill, R. J. (2016). Factor structure of the Differential Ability Scales–Second Edition: exploratory and hierarchical factor analyses with the core subtests. Psychological Assessment, 28, 1475–1488. doi: 10.1037/pas0000279.CrossRefPubMedGoogle Scholar
  16. Canivez, G. L., & Watkins, M. W. (2010a). Investigation of the factor structure of the Wechsler Adult Intelligence Scale–Fourth Edition (WAIS–IV): exploratory and higher-order factor analyses. Psychological Assessment, 22, 827–836. doi: 10.1037/a0020429.CrossRefPubMedGoogle Scholar
  17. Canivez, G. L., & Watkins, M. W. (2010b). Exploratory and higher-order factor analyses of the Wechsler Adult Intelligence Scale–Fourth Edition (WAIS–IV) adolescent subsample. School Psychology Quarterly, 25, 223–235. doi: 10.1037/a0022046.CrossRefGoogle Scholar
  18. Canivez, G. L., & Watkins, M. W. (2016). Review of the Wechsler Intelligence Scale for Children–Fifth Edition: Critique, commentary, and independent analyses. In A. S. Kaufman, S. E. Raiford, & D. L. Coalson (Authors), Intelligent testing with the WISC–V (pp. 683–702). Hoboken, NJ: Wiley.Google Scholar
  19. Canivez, G. L., Konold, T. R., Collins, J. M., & Wilson, G. (2009). Construct validity of the Wechsler Abbreviated Scale of Intelligence and Wide Range Intelligence Test: convergent and structural validity. School Psychology Quarterly, 24, 252–265. doi: 10.1037/a0018030.CrossRefGoogle Scholar
  20. Canivez, G. L., Watkins, M. W., James, T., James, K., & Good, R. (2014). Incremental validity of WISC–IVUK factor index scores with a referred Irish sample: predicting performance on the WIAT–IIUK. British Journal of Educational Psychology, 84, 667–684. doi: 10.1111/bjep.12056.CrossRefPubMedGoogle Scholar
  21. Canivez, G. L., Watkins, M. W., & Dombrowski, S. C. (2016a). Factor structure of the Wechsler Intelligence Scale for Children–Fifth Edition: exploratory factor analyses with the 16 primary and secondary subtests. Psychological Assessment, 28, 975–986. doi: 10.1037/pas0000238.CrossRefPubMedGoogle Scholar
  22. Canivez, G. L., Watkins, M. W., & Dombrowski, S. C. (2016b). Structural validity of the Wechsler Intelligence Scale for Children–Fifth Edition: confirmatory factor analyses with the 16 primary and secondary subtests. Psychological Assessment . doi: 10.1037/pas0000358.Advance online publicationGoogle Scholar
  23. Carretta, T. R., & Ree, J. J. (2001). Pitfalls of ability research. International Journal of Selection and Assessment, 9, 325–335.CrossRefGoogle Scholar
  24. Carroll, J. B. (1993). Human cognitive abilities. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  25. Carroll, J. B. (1995). On methodology in the study of cognitive abilities. Multivariate Behavioral Research, 30, 429–452. doi: 10.1207/s15327906mbr3003_6.CrossRefPubMedGoogle Scholar
  26. Carroll, J. B. (1998). Human cognitive abilities: a critique. In J. J. McArdle & R. W. Woodcock (Eds.), Human cognitive abilities in theory and practice (pp. 5–23). Mahwah: Erlbaum.Google Scholar
  27. Carroll, J. B. (2003). The higher-stratum structure of cognitive abilities: current evidence supports g and about ten broad factors. In H. Nyborg (Ed.), The scientific study of general intelligence: tribute to Arthur R. Jensen (pp. 5–21). New York: Pergamon.CrossRefGoogle Scholar
  28. Cattell, R. B. (1966). The scree test for the number of factors. Multivariate Behavioral Research, 1, 245–276. doi: 10.1207/s15327906mbr0102_10.CrossRefPubMedGoogle Scholar
  29. Cattell, R. B. (1987). Intelligence: its structure, growth, and action. New York: Elsevier.Google Scholar
  30. Cattell, R. B., & Horn, J. L. (1978). A check on the theory of fluid and crystallized intelligence with description of new subtest designs. Journal of Educational Measurement, 15, 139–164. doi: 10.1111/j.1745–3984.1978.tb00065.x.CrossRefGoogle Scholar
  31. Chen, F. F., Hayes, A., Carver, C. S., Laurenceau, J.–. P., & Zhang, Z. (2012). Modeling general and specific variance in multifaceted constructs: a comparison of the bifactor model to other approaches. Journal of Personality, 80, 219–251. doi: 10.1111/j.1467-6494.2011.00739.x.CrossRefPubMedGoogle Scholar
  32. Chen, H., Zhang, O., Raiford, S. E., Zhu, J., & Weiss, L. G. (2015). Factor invariance between genders on the Wechsler Intelligence Scale for Children–Fifth Edition. Personality and Individual Differences, 86, 1–5. doi: 10.1016/j.paid.2015.05.020.CrossRefGoogle Scholar
  33. Child, D. (2006). The essentials of factor analysis (3rd ed.). New York: Continuum.Google Scholar
  34. Deary, I. J. (2013). Intelligence. Current Biology, 23, 673–676. doi: 10.1016/j.cub.2013.07.021.CrossRefGoogle Scholar
  35. DiStefano, C., & Dombrowski, S. C. (2006). Investigating the theoretical structure of the Stanford–Binet–Fifth Edition. Journal of Psychoeducational Assessment, 24, 123–136. doi: 10.1177/0734282905285244.CrossRefGoogle Scholar
  36. Dombrowski, S. C. (2013). Investigating the structure of the WJ–III cognitive at school age. School Psychology Quarterly, 28, 154–169. doi: 10.1037/spq0000010.CrossRefPubMedGoogle Scholar
  37. Dombrowski, S. C. (2014a). Exploratory bifactor analysis of the WJ–III cognitive in adulthood via the Schmid–Leiman procedure. Journal of Psychoeducational Assessment, 32, 330–341. doi: 10.1177/0734282913508243.CrossRefGoogle Scholar
  38. Dombrowski, S. C. (2014b). Investigating the structure of the WJ–III cognitive in early school age through two exploratory bifactor analysis procedures. Journal of Psychoeducational Assessment, 32, 483–494. doi: 10.1177/0734282914530838.CrossRefGoogle Scholar
  39. Dombrowski, S. C. (2015). Psychoeducational assessment and report writing. New York: Springer Science.CrossRefGoogle Scholar
  40. Dombrowski, S. C., & Watkins, M. W. (2013). Exploratory and higher order factor analysis of the WJ–III full test battery: a school aged analysis. Psychological Assessment, 25, 442–455. doi: 10.1037/a0031335.CrossRefPubMedGoogle Scholar
  41. Dombrowski, S. C., Ambrose, D. A., & Clinton, A. (2007). Dogmatic insularity in learning disabilities diagnosis and the critical need for a philosophical analysis. International Journal of Special Education, 22(1), 3–10.CrossRefGoogle Scholar
  42. Dombrowski, S. C., Watkins, M. W., & Brogan, M. J. (2009). An exploratory investigation of the factor structure of the Reynolds Intellectual Assessment Scales (RIAS). Journal of Psychoeducational Assessment, 27, 494–507. doi: 10.1177/0734282909333179.CrossRefGoogle Scholar
  43. Dombrowski, S. C., Canivez, G. L., Watkins, M. W., & Beaujean, A. (2015). Exploratory bifactor analysis of the Wechsler Intelligence Scale for Children–Fifth Edition with the 16 primary and secondary subtests. Intelligence, 53, 194–201. doi: 10.1016/j.intell.2015.10.009.CrossRefGoogle Scholar
  44. Dombrowski, S. C., McGill, R. J., & Canivez, G. L. (2016). Exploratory and hierarchical factor analysis of the WJ IV cognitive at school age. Psychological Assessment. Advance online publication. doi: 10.1037/pas0000350.
  45. Fabrigar, L. R., Wegener, D. T., MacCallum, R. C., & Strahan, E. J. (1999). Evaluating the use of exploratory factor analysis in psychological research. Psychological Methods, 4, 272–299. doi: 10.1037/1082-989X.4.3.272.CrossRefGoogle Scholar
  46. Frazier, T. W., & Youngstrom, E. A. (2007). Historical increase in the number of factors measured by commercial tests of cognitive ability: are we overfactoring? Intelligence, 35, 169–182. doi: 10.1016/j.intell.2006.07.002.CrossRefGoogle Scholar
  47. Gignac, G. E. (2005). Revisiting the factor structure of the WAIS–R: insights through nested factor modeling. Assessment, 12, 320–329. doi: 10.1177/1073191105278118.CrossRefPubMedGoogle Scholar
  48. Gignac, G. E. (2006). The WAIS–III as a nested factors model: a useful alternative to the more conventional oblique and higher-order models. Journal of Individual Differences, 27, 73–86. doi: 10.1027/1614–0001.27.2.73.CrossRefGoogle Scholar
  49. Gignac, G. (2008). Higher-order models versus direct hierarchical models: g as superordinate or breadth factor? Psychology Science Quarterly, 50, 21–43.Google Scholar
  50. Gignac, G. E., & Watkins, M. W. (2013). Bifactor modeling and the estimation of model-based reliability in the WAIS–IV. Multivariate Behavioral Research, 48, 639–662. doi: 10.1080/00273171.2013.804398.CrossRefPubMedGoogle Scholar
  51. Glutting, J. J., Youngstrom, E. A., Ward, T., Ward, S., & Hale, R. (1997). Incremental efficacy of WISC–III factor scores in predicting achievement: what do they tell us? Psychological Assessment, 9, 295–301.CrossRefGoogle Scholar
  52. Glutting, J. J., Watkins, M. W., Konold, T. R., & McDermott, P. A. (2006). Distinctions without a difference: the utility of observed versus latent factors from the WISC–IV in estimating reading and math achievement on the WIAI–II. Journal of Special Education, 40, 103–114. doi: 10.1177/00224669060400020101.CrossRefGoogle Scholar
  53. Gorsuch, R. L. (1983). Factor analysis (2nd ed.). Hillsdale: Erlbaum.Google Scholar
  54. Gustafsson, J. E., & Snow, R. E. (1997). Ability profiles. In R. F. Dillon (Ed.), Handbook on testing (pp. 107–135). Westport: Greenwood Press.Google Scholar
  55. Horn, J. L. (1965). A rationale and test for the number of factors in factor analysis. Psychometrika, 30, 179–185.CrossRefPubMedGoogle Scholar
  56. Horn, J. L. (1991). Measurement of intellectual capabilities: A review of theory. In K. S. McGrew, J. K. Werder & R. W. Woodcock (Eds.), Woodcock-Johnson technical manual (Rev. ed., pp. 197–232). Itasca, IL: Riverside.Google Scholar
  57. Horn, J. L., & Blankson, A. N. (2012). Foundations for better understanding of cognitive abilities. In D. P. Flanagan & P. L. Harrison (Eds.), Contemporary intellectual assessment: theories, tests, and issues (3rd ed., pp. 73–98). New York: Guilford.Google Scholar
  58. Horn, J. L., & Cattell, R. B. (1966). Refinement and test of the theory of fluid and crystallized general intelligence. Journal of Educational Psychology, 57, 253–270.CrossRefPubMedGoogle Scholar
  59. Jensen, A. R. (1998). The g factor: the science of mental ability. Westport: Praeger.Google Scholar
  60. Kaiser, H. F. (1960). The application of electronic computers to factor analysis. Educational and Psychological Measurement, 20, 141–151. doi: 10.1177/001316446002000116.CrossRefGoogle Scholar
  61. Kaufman, A. S. (1994). Intelligent testing with the WISC–III. New York: Wiley.Google Scholar
  62. Kline, R. B. (2011). Principles and practice of structural equation modeling (3rd ed.). New York: Guilford.Google Scholar
  63. Kline, R. B. (2016). Principles and practices of structural equation modeling, Fourth edition. New York: Guilford Press.Google Scholar
  64. Le, H., Schmidt, F. L., Harter, J. K., & Lauver, K. J. (2010). The problem of empirical redundancy of constructs in organizational research: an empirical investigation. Organizational Behavior and Human Decision Processes, 112, 112–125. doi: 10.1016/j.obhdp.2010.02.003.CrossRefGoogle Scholar
  65. Lubinski, D. (2000). Scientific and social significance of assessing individual differences: “sinking shafts at a few critical points.”. Annual Review of Psychology, 51, 405–444. doi: 10.1146/annurev.psych.51.1.405.CrossRefPubMedGoogle Scholar
  66. Luciana, M., Conklin, H. M., Hooper, C. J., & Yarger, R. S. (2005). The development of nonverbal working memory and executive control processes in adolescents. Child Development, 76, 697–712.CrossRefPubMedGoogle Scholar
  67. McClain, A. L. (1996). Hierarchical analytic methods that yield different perspectives on dynamics: aids to interpretation. Advances in Social Science Methodology, 4, 229–240. doi: 10.1177/0734282915624293.Google Scholar
  68. Nelson, J. M., & Canivez, G. L. (2012). Examination of the structural, convergent, and incremental validity of the Reynolds Intellectual Assessment Scales (RIAS) with a clinical sample. Psychological Assessment, 24, 129–140. doi: 10.1037/a0024878.CrossRefPubMedGoogle Scholar
  69. Nelson, J. M., Canivez, G. L., Lindstrom, W., & Hatt, C. (2007). Higher-order exploratory factor analysis of the Reynolds Intellectual Assessment Scales with a referred sample. Journal of School Psychology, 45, 439–456. doi: 10.1016/j.jsp.2007.03.003.CrossRefGoogle Scholar
  70. Nelson, J. M., Canivez, G. L., & Watkins, M. W. (2013). Structural and incremental validity of the Wechsler Adult Intelligence Scale–Fourth Edition (WAIS–IV) with a clinical sample. Psychological Assessment, 25, 618–630. doi: 10.1037/a0032086.CrossRefPubMedGoogle Scholar
  71. Oakland, T., Douglas, S., & Kane, H. (2016). Top ten standardized tests used internationally with children and youth by school psychologists in 64 countries: a 24-year follow-up study. Journal of Psychoeducational Assessment, 34, 166–176.CrossRefGoogle Scholar
  72. Ree, M. J., Carretta, T. R., & Green, M. T. (2003). The ubiquitous role of g in training. In H. Nyborg (Ed.), The scientific study of general intelligence: tribute to Arthur R. Jensen (pp. 262–274). New York: Pergamon Press.Google Scholar
  73. Reise, S. P. (2012). The rediscovery of bifactor measurement models. Multivariate Behavioral Research, 47, 667–696. doi: 10.1080/00273171.2012.715555.CrossRefPubMedPubMedCentralGoogle Scholar
  74. Reise, S. P., Bonifay, W. E., & Haviland, M. G. (2013). Scoring and modeling psychological measures in the presence of multidimensionality. Journal of Personality Assessment, 95, 129–140. doi: 10.1080/00223891.2012.725437.CrossRefPubMedGoogle Scholar
  75. Rodriguez, A., Reise, S. P., & Haviland, M. G. (2016). Evaluating bifactor models: calculating and interpreting statistical indices. Psychological Methods, 21, 137–150. doi: 10.1037/met0000045.CrossRefPubMedGoogle Scholar
  76. Schmid, J., & Leiman, J. M. (1957). The development of hierarchical factor solutions. Psychometrika, 22, 53–61. doi: 10.1007/BF02289209.CrossRefGoogle Scholar
  77. Spearman, C. (1927). The abilities of man. New York: Cambridge University Press.Google Scholar
  78. Strauss, E., Spreen, O., & Hunter, M. (2000). Implications of test revisions for research. Psychological Assessment, 12, 237–244. doi: 10.1037/1040-3590.12.3.237.
  79. Thompson, B. (2004). Exploratory and confirmatory factor analysis: understanding concepts and applications. Washington, DC: American Psychological Association.CrossRefGoogle Scholar
  80. Velicer, W. F. (1976). Determining the number of components form the matrix of partial correlations. Psychometrika, 31, 321–327. doi: 10.1007/BF02293557.CrossRefGoogle Scholar
  81. Watkins, M. W. (2006). Orthogonal higher-order structure of the Wechsler Intelligence Scale for Children–Fourth Edition. Psychological Assessment, 18, 123–125. doi: 10.1037/1040-3590.18.1.123.CrossRefPubMedGoogle Scholar
  82. Watkins, M. W. (2010). Structure of the Wechsler Intelligence Scale for Children–Fourth Edition among a national sample of referred students. Psychological Assessment, 22, 782–787. doi: 10.1037/a0020043.CrossRefPubMedGoogle Scholar
  83. Watkins, M. W. (2013). Omega. [Computer software]. Phoenix, AZ: Ed & Psych Associates.Google Scholar
  84. Watkins, M. W., & Beaujean, A. A. (2014). Bifactor structure of the Wechsler Preschool and Primary Scale of Intelligence–Fourth edition. School Psychology Quarterly, 29, 52–63. doi: 10.1037/spq0000038.CrossRefPubMedGoogle Scholar
  85. Watkins, M. W., Wilson, S. M., Kotz, K. M., Carbone, M. C., & Babula, T. (2006). Factor structure of the Wechsler Intelligence Scale for Children–Fourth Edition among referred students. Educational and Psychological Measurement, 66, 975–983. doi: 10.1177/0013164406288168.CrossRefGoogle Scholar
  86. Watkins, M. W., Canivez, G. L., James, T., James, K., & Good, R. (2013). Construct validity of the WISC–IVUK with a large referred Irish sample. International Journal of School & Educational Psychology, 1, 102–111. doi: 10.1080/21683603.2013.794439.CrossRefGoogle Scholar
  87. Wechsler, D. (2003). Wechsler Intelligence Scales for Children--Fouth Edition. San Antonio, TX: The Psychological Corporation.Google Scholar
  88. Wechsler, D. (2014a). Wechsler Intelligence Scale for Children–Fifth Edition. San Antonio: NCS Pearson.Google Scholar
  89. Wechsler, D. (2014b). Wechsler Intelligence Scale for Children–Fifth Edition technical and interpretive manual. San Antonio: NCS Pearson.Google Scholar
  90. Wechsler, D. (2014c). Technical and interpretive manual supplement: special group validity studies with other measures and additional tables. San Antonio: NCS Pearson.Google Scholar
  91. Weiner, I. B. (1989). On competence and ethicality in psychodiagnostic assessment. Journal of Personality Assessment, 53, 827–831. doi: 10.1207/s15327752jpa5304_18.CrossRefPubMedGoogle Scholar
  92. Weiss, L. G., Keith, T. Z., Zhu, J., & Chen, H. (2013b). WISC-IV and clinical validation of the four- and five-factor interpretative approaches. Journal of Psycheducational Assessment, 31, 114–131.CrossRefGoogle Scholar
  93. Wolff, H. G., & Preising, K. (2005). Exploring item and higher order factor structure with the Schmid-Leiman solution: syntax codes for SPSS and SAS. Behavior Research Methods, 37, 48–58.CrossRefPubMedGoogle Scholar
  94. Yuan, K. H., & Chan, W. (2005). On nonequivalence of several procedures of structural equation modeling. Psychometrika, 70, 791–798. doi: 10.1007/s11336–001–0930–910.1007/s11336–001–0930–9.CrossRefGoogle Scholar
  95. Zinbarg, R. E., Revelle, W., Yovel, I., & Li, W. (2005). Cronbach’s alpha, Revelle’s beta, and McDonald’s omega h: their relations with each other and two alternative conceptualizations of reliability. Psychometrika, 70, 123–133. doi: 10.1007/s11336–003–0974–7.CrossRefGoogle Scholar
  96. Zinbarg, R. E., Yovel, I., Revelle, W., & McDonald, R. P. (2006). Estimating generalizability to a latent variable common to all of a scale’s indicators: a comparison of estimators for ωh. Applied Psychological Measurement, 30, 121–144. doi: 10.1177/0146621605278814.CrossRefGoogle Scholar
  97. Zoski, K. W., & Jurs, S. (1996). An objective counterpart to the visual scree test for factor analysis: the standard error scree. Educational and Psychological Measurement, 56, 443–451. doi: 10.1177/0013164496056003006.CrossRefGoogle Scholar

Copyright information

© California Association of School Psychologists 2017

Authors and Affiliations

  • Stefan C. Dombrowski
    • 1
  • Gary L. Canivez
    • 2
  • Marley W. Watkins
    • 3
  1. 1.School Psychology Program, Department of Graduate Education, Leadership & CounselingRider UniversityLawrencevilleUSA
  2. 2.Eastern Illinois UniversityCharlestonUSA
  3. 3.Baylor UniversityWacoUSA

Personalised recommendations