Skip to main content
Log in

Parameter estimation in the stochastic superparameterization of two-layer quasigeostrophic flows

Estimation of subgrid-scale modeling parameters in the stochastic superparameterization of two-layer quasigeostrophic turbulence

  • Research
  • Published:
Research in the Mathematical Sciences Aims and scope Submit manuscript

Abstract

Geophysical turbulence has a wide range of spatiotemporal scales that requires a multiscale prediction model for efficient and fast simulations. Stochastic parameterization is a class of multiscale methods that approximates the large-scale behaviors of the turbulent system without relying on scale separation. In the stochastic parameterization of unresolved subgrid-scale dynamics, there are several modeling parameters to be determined by tuning or fitting to data. We propose a strategy to estimate the modeling parameters in the stochastic parameterization of geostrophic turbulent systems. The main idea of the proposed approach is to generate data in a spatiotemporally local domain and use physical/statistical information to estimate the modeling parameters. In particular, we focus on the estimation of modeling parameters in the stochastic superparameterization, a variant of the stochastic parameterization framework, for an idealized model of synoptic scale turbulence in the atmosphere and oceans. The test regimes considered in this study include strong and moderate turbulence with complicated patterns of waves, jets, and vortices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Abdulle, A., Weinan, E., Engquist, B., Vanden-Eijnden, E.: The heterogeneous multiscale method. Acta Numer. 21(1–87), 1–87 (2012)

    Article  MathSciNet  Google Scholar 

  2. Arakawa, A.: Computational design for long-term numerical integration of the equations of fluid motion: two-dimensional incompressible flow. J. Comput. Phys. I(1), 119–143 (1966)

    Article  Google Scholar 

  3. Bardina, J., Ferziger, J.H., Reynolds, W.C.: Improved subgrid-scale models for large eddy simulation. In: AIAA Paper 80–1357. AIAA, Reston, VA (1980)

  4. Berner, J., Shutts, G.J., Leutbecher, M., Palmer, T.N.: A spectral stochastic kinetic energy backscatter scheme and its impact on flow-dependent predictability in the ECMWF ensemble prediction system. J. Atmos. Sci. 66, 603–626 (2009)

    Article  Google Scholar 

  5. Boffetta, G., Ecke, R.E.: Two-dimensionalturbulence. Ann. Rev. Fluid Mech. 44, 427–451 (2012)

    Article  Google Scholar 

  6. Campin, J.-M., Hill, C., Jones, H., Marshall, J.: Super-parameterization in ocean modeling: application to deep convection. Ocean Model. 36, 90–101 (2011)

    Article  Google Scholar 

  7. Charney, J.G.: Geostrophic turbulence. J. Atmos. Sci. 28, 1087–1095 (1971)

    Article  Google Scholar 

  8. Delsole, T.: Stochastic models of quasigeostrophic turbulence. Surv. Geophys. 25, 107–149 (2004)

    Article  Google Scholar 

  9. Dritschel, D., McIntyre, M.: Multiple jets as PV staircases: the Phillips effect and the resilience of eddy-transport barriers. J. Atmos. Sci. 65, 855–874 (2008)

    Article  Google Scholar 

  10. Farrell, B.F., Ioannou, P.J.: A theory of baroclinic turbulence. J. Atmos. Sci. 66, 2444–2454 (2009)

    Article  Google Scholar 

  11. Grabowski, W., Smolarkiewicz, P.: CRCP: a cloud resolving convection parameterization for modeling the tropical convecting atmosphere. Physica D 133, 171–178 (1999)

    Article  Google Scholar 

  12. Griffies, S.M., Hallberg, R.W.: Biharmonic friction with a Smagorinsky-like viscosity for use in large-scale eddy-permitting ocean models. Mon. Weather Rev. 128, 2935–2946 (2000)

    Article  Google Scholar 

  13. Grooms, I., Lee, Y., Majda, A.: Numerical schemes for stochastic backscatter in the inverse cascade of quasigeostrophic turbuelcne. Mult. Model Sim. 13(3), 1001–1021 (2015)

    Article  Google Scholar 

  14. Grooms, I., Lee, Y., Majda, A.: Ensemble filtering and low-resolution model error: additive inflation, stochastic parameterization, and model numerics. Mon. Weather Rev. 143(10), 3912–3924 (2015)

    Article  Google Scholar 

  15. Grooms, I., Majda, A.J.: Efficient stochastic superparameterization for geophysical turbulence. Proc. Natl. Acad. Sci. USA 110, 4464–4469 (2013)

    Article  MathSciNet  Google Scholar 

  16. Grooms, I., Majda, A.J.: Stochastic superparameterization in quasigeostrophic turbulence. J. Comput. Phys. 271, 78–98 (2014)

    Article  MathSciNet  Google Scholar 

  17. Jansen, M.F., Held, I.M.: Parameterizing subgrid-scale eddy effects using energetically consistent backscatter. Ocean Model. 80, 36–48 (2014)

    Article  Google Scholar 

  18. Khairoutdinov, M., Randall, D., DeMott, C.: Simulations of the atmospheric general circulation using a cloud-resolving model as a superparameterization of physical processes. J. Atmos. Sci. 62, 2136–2154 (2005)

    Article  Google Scholar 

  19. Kitsios, V., Frederiksen, J.S., Zidikheri, M.J.: Subgrid model with scaling laws for atmospheric simulations. J. Atmos. Sci. 69, 1427–1445 (2012)

    Article  Google Scholar 

  20. Kitsios, V., Frederiksen, J.S.: Subgrid parameterization of eddy-eddy, eddy-meanfield, eddy-topographic, meanfield-meanfield and meanfield-topographic interactions in atmospheric models. J. Atmos. Sci. 76, 457–477 (2019)

    Article  Google Scholar 

  21. Lee, Y., Engquist, B.: Multiscale numerical methods for advection-diffusion in incompressible turbulent flow fields. J. Comput. Phys. 317(15), 33–46 (2016)

    Article  MathSciNet  Google Scholar 

  22. Lee, Y., Majda, A., Qi, D.: Stochastic superparameterization and multiscale filtering of turbulent tracers. Multi. Model Sim. 15(1), 215–234 (2017)

    Article  MathSciNet  Google Scholar 

  23. Lee, Y., Majda, A., Qi, D.: Preventing catastrophic filter divergence using adaptive additive inflation for baroclinic turbulence. Mon. Weather Rev. 145(2), 669–682 (2017)

    Article  Google Scholar 

  24. Leith, C.E.: Atmospheric predictability and two-dimensional turbulence. J. Atmos. Sci. 78, 145–161 (1971)

    Article  Google Scholar 

  25. Leith, C.E.: Stochastic backscatter in a subgrid-scale model: plane shear mixing layer. Phys. Fluids A 2, 297–299 (1990)

    Article  Google Scholar 

  26. Majda, A.J., Grooms, I.: New perspectives on superparameterization for geophysical turbulence. J. Comput. Phys. 271, 60–77 (2014)

    Article  MathSciNet  Google Scholar 

  27. Majda, A.J., Harlim, J.: Filtering Complex Turbulent Systems. Cambridge University Press, Cambridge (2012)

    Book  Google Scholar 

  28. McComb, W.D.: The Physics of Fluid Turbulence. Oxford Engineering Science Series, vol. 25. Clarendon Press, New York (1991)

    MATH  Google Scholar 

  29. Meneveau, C., Katz, J.: Scale-invariance and turbulence models for large-eddy simulation. Ann. Rev. Fluid Mech. 32, 1–32 (2000)

    Article  MathSciNet  Google Scholar 

  30. Porta Mana, P.G.L., Zanna, L.: Toward a stochastic parameterization of ocean mesoscale eddies. Ocean Model. 79, 1–20 (2014)

    Article  Google Scholar 

  31. Salmon, R.: Lectures on Geophysical Fluid Dynamics. Oxford University Press, New York (1998)

    Google Scholar 

  32. Schumann, U.: Stochastic backscatter of turbulence energy and scalar variance by random subgrid-scale fluxes. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 451, 293–318 (1995)

    MATH  Google Scholar 

  33. Tago, Y., Higuchi, Y.: Fluid flow analysis of jets from nozzles in top blown process. ISIJ Int. 43, 209–215 (2003)

    Article  Google Scholar 

  34. Thompson, A.F., Young, W.R.: Two-layer baroclinic eddy heat fluxes: zonal flows and energy balance. J. Atmos. Sci. 64, 3214–3231 (2007)

    Article  Google Scholar 

  35. Thual, S., Majda, A.J., Stchmann, S.N.: A stochastic skeleton model for the MJO. J. Atmos. Sci. 71, 697–715 (2014)

    Article  Google Scholar 

  36. Vallis, G.K.: Atmospheric and Oceanic Fluid Dynamics. Cambridge University Press, Cambridge (2006)

    Book  Google Scholar 

  37. Weinan, E., Engquist, B.: The heterogeneous multi-scale method. Commun. Math. Sci. 1, 87–133 (2003)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The author would like to thank Andrew J. Majda and Bjorn Engquist for their comments and encouragement that made this work possible.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoonsang Lee.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The author is supported by NSF DMS-1912999 and the Burke award at Dartmouth College

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, Y. Parameter estimation in the stochastic superparameterization of two-layer quasigeostrophic flows. Res Math Sci 7, 14 (2020). https://doi.org/10.1007/s40687-020-00213-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40687-020-00213-8

Keywords

Mathematics Subject Classification

Navigation