Exact relations for Green’s functions in linear PDE and boundary field equalities: a generalization of conservation laws

  • Graeme W. MiltonEmail author
  • Daniel Onofrei


Many physical equations have the form \(\mathbf{J }(\mathbf{x })=\mathbf{L }(\mathbf{x })\mathbf{E }(\mathbf{x })-\mathbf{h }(\mathbf{x })\) with source \(\mathbf{h }(\mathbf{x })\) and fields \(\mathbf{E }\) and \(\mathbf{J }\) satisfying differential constraints, symbolized by \(\mathbf{E }\in \mathcal E\), \(\mathbf{J }\in \mathcal J\) where \(\mathcal E\), \(\mathcal J\) are orthogonal spaces. We show that if \(\mathbf{L }(\mathbf{x })\) takes values in certain nonlinear manifolds \(\mathcal M\), and coercivity and boundedness conditions hold, then the infinite body Green’s function (fundamental solution) satisfies exact identities. The theory also links Green’s functions of different problems. The analysis is based on the theory of exact relations for composites, but without assumptions about the length scales of variations in \(\mathbf{L }(\mathbf{x })\), and more general equations, such as for waves in lossy media, are allowed. For bodies \(\Omega \), inside which \(\mathbf{L }(\mathbf{x })\in \mathcal{M}\), the “Dirichlet-to-Neumann map” giving the response also satisfies exact relations. These boundary field equalities generalize the notion of conservation laws: the field inside \(\Omega \) satisfies certain constraints that leave a wide choice in these fields, but which give identities satisfied by the boundary fields, and moreover provide constraints on the fields inside the body. A consequence is the following: if a matrix-valued field \(\mathbf{Q }(\mathbf{x })\) with divergence-free columns takes values within \(\Omega \) in a set \(\mathcal B\) (independent of \(\mathbf{x }\)) that lies on a nonlinear manifold, we find conditions on the manifold, and on \(\mathcal B\), that with appropriate conditions on the boundary fluxes \(\mathbf{q }(\mathbf{x })=\mathbf{n }(\mathbf{x })\cdot \mathbf{Q }(\mathbf{x })\) (where \(\mathbf{n }(\mathbf{x })\) is the outward normal to \(\partial \Omega \)) force \(\mathbf{Q }(\mathbf{x })\) within \(\Omega \) to take values in a subspace \(\mathcal D\). This forces \(\mathbf{q }(\mathbf{x })\) to take values in \(\mathbf{n }(\mathbf{x })\cdot \mathcal D\). We find there are additional divergence-free fields inside \(\Omega \) that in turn generate additional boundary field equalities. Consequently, there exist partial null Lagrangians, functionals \(F(\mathbf{w },\nabla \mathbf{w })\) of a vector potential \(\mathbf{w }\) and its gradient that act as null Lagrangians when \(\nabla \mathbf{w }\) is constrained for \(\mathbf{x }\in \Omega \) to take values in certain sets \(\mathcal A\), of appropriate nonlinear manifolds, and when \(\mathbf{w }\) satisfies appropriate boundary conditions. The extension to certain nonlinear minimization problems is also sketched.


Green’s functions Exact relations Inverse problems Boundary field equalities Inhomogeneous media 

Mathematics Subject Classification 2000

35J08 35J25 65N21 



GWM is grateful to the National Science Foundation for support through the Research Grants DMS-1211359 and DMS-1814854. Both authors thank the Institute for Mathematics and its Applications at the University of Minnesota for hosting their visit there during the Fall 2016 where this work was initiated as part of the program on Mathematics and Optics. Yury Grabovsky and the referees are thanked for their comments which led to significant improvements of the manuscript.


  1. 1.
    Allaire, G.: Shape Optimization by the Homogenization Method. Applied Mathematical Sciences, vol. 146. Springer, Berlin (2002)zbMATHGoogle Scholar
  2. 2.
    Backus, G.E.: Long-wave elastic anisotropy produced by horizontal layering. J. Geophys. Res. 67(11), 4427–4440 (1962)CrossRefGoogle Scholar
  3. 3.
    Ball, J.M.: Convexity conditions and existence theorems in non-linear elasticity. Arch. Ration. Mech. Anal. 63(4), 337–403 (1977)CrossRefGoogle Scholar
  4. 4.
    Batchelor, G.K.: Transport properties of two-phase materials with random structure. Annu. Rev. Fluid Mech. 6, 227–255 (1974)CrossRefGoogle Scholar
  5. 5.
    Beněsová, B.: Kružík, Martin: weak lower semicontinuity of integral functionals and applications. SIAM Rev. 59(4), 703–766 (2017)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Cherkaev, A.V.: Variational Methods for Structural Optimization. Applied Mathematical Sciences. Springer, Berlin (2000)CrossRefGoogle Scholar
  7. 7.
    Cherkaev, A.V., Gibiansky, L.V.: Variational principles for complex conductivity, viscoelasticity, and similar problems in media with complex moduli. J. Math. Phys. 35(1), 127–145 (1994)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Clark, K.E., Milton, G.W.: Modeling the effective conductivity function of an arbitrary two-dimensional polycrystal using sequential laminates. Proc. R. Soc. Edinb. 124A(4), 757–783 (1994)CrossRefGoogle Scholar
  9. 9.
    Dell’Antonio, G.F., Figari, R., Orlandi, E.: An approach through orthogonal projections to the study of inhomogeneous or random media with linear response. Ann l’inst Henri Poincaré (A) Phys. théor. 44(1), 1–28 (1986)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Dykhne, A. M.: Conductivity of a two-dimensional two-phase system. Zhurnal eksperimental’noi i teoreticheskoi fiziki / Akademiia Nauk SSSR, 59:110–115, July 1970. English translation in Soviet Physics JETP 32(1):63–65 (1971)Google Scholar
  11. 11.
    Eyre, D.J., Milton, G.W.: A fast numerical scheme for computing the response of composites using grid refinement. Eur. Phys. J. Appl. Phys. 6(1), 41–47 (1999)CrossRefGoogle Scholar
  12. 12.
    Faraco, D., Székelyhidi, L.: Tartars conjecture and localization of the quasiconvex hull in \(\mathbb{R}^{2\times 2}\). Acta Math. 200(2), 279–305 (2008)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Grabovsky, Y.: Exact relations for effective tensors of polycrystals. I: necessary conditions. Arch. Ration. Mech. Anal. 143(4), 309–329 (1998)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Grabovsky, Y.: Algebra, geometry and computations of exact relations for effective moduli of composites. In: Gianfranco Capriz and Paolo Maria Mariano, editors, Advances in Multifield Theories of Continua with Substructure, Modelling and Simulation in Science, Engineering and Technology, pp. 167–197. Birkhäuser Verlag, Boston (2004)Google Scholar
  15. 15.
    Grabovsky, Y.: Composite Materials: Mathematical Theory and Exact Relations. IOP Publishing, Bristol (2016)CrossRefGoogle Scholar
  16. 16.
    Grabovsky, Y.: From microstructure-independent formulas for composite materials to rank-one convex, non-quasiconvex functions. Arch. Ration. Mech. Anal. 227(2), 607–636 (2018)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Grabovsky, Y., Milton, G.W., Sage, D.S.: Exact relations for effective tensors of composites: Necessary conditions and sufficient conditions. Commun. Pure Appl. Math. (New York) 53(3), 300–353 (2000)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Grabovsky, Y., Sage, D.S.: Exact relations for effective tensors of polycrystals. II: applications to elasticity and piezoelectricity. Arch. Ration. Mech. Anal. 143(4), 331–356 (1998)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Kohler, W., Papanicolaou, G. C: Bounds for the effective conductivity of random media. In Burridge, R., Childress, S., Papanicolaou, G.C. (eds.) Macroscopic Properties of Disordered Media: Proceedings of a Conference Held at the Courant Institute, June 1–3, 1981, Lecture Notes in Physics, vol. 154, pp. 111–130. Springer, Berlin (1982)Google Scholar
  20. 20.
    Kohn, R.V.: The relaxation of a double-well energy. Contin. Mech. Thermodyn. 3(3), 193–236 (1991)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Lax, P.D.: Functional Analysis. Wiley, New York (2002)zbMATHGoogle Scholar
  22. 22.
    Levin, V. M.: Thermal expansion coefficients of heterogeneous materials. Inzhenernyi Zhurnal. Mekhanika Tverdogo Tela: MTT, 2(1):88–94 (1967). English translation in Mechanics of Solids 2(1):58–61 (1967)Google Scholar
  23. 23.
    Milgrom, M.: Linear response of general composite systems to many coupled fields. Phys. Rev. B: Condens. Matter Mater. Phys. 41(18), 12484–12494 (1990)CrossRefGoogle Scholar
  24. 24.
    Milton, G.W.: Multicomponent composites, electrical networks and new types of continued fraction. I. Commun. Math. Phys. 111(2), 281–327 (1987)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Milton, G.W.: On characterizing the set of possible effective tensors of composites: the variational method and the translation method. Commun. Pure Appl. Math. (New York) 43(1), 63–125 (1990)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Milton G. W: The Theory of Composites. Cambridge Monographs on Applied and Computational Mathematics, vol. 6. In: Ciarlet, P.G, Iserles, A., Kohn, R.V., Wright, M.H. (eds.) Cambridge University Press, Cambridge (2002)Google Scholar
  27. 27.
    Milton, G.W.: Sharp inequalities that generalize the divergence theorem: an extension of the notion of quasi-convexity. Proc. R. Soc. A: Math. Phys. Eng. Sci. 469(2157), 20130075 (2013). See addendum [29]MathSciNetCrossRefGoogle Scholar
  28. 28.
    Milton, G.W.: Addendum to “Sharp inequalities that generalize the divergence theorem: an extension of the notion of quasi-convexity. Proc. R. Soc. A: Math. Phys. Eng. Sci. 471(2176), 20140886 (2015). See [28]CrossRefGoogle Scholar
  29. 29.
    Milton, G.W.: A new route to finding bounds on the generalized spectrum of many physical operators. J. Math. Phys. 59, 061508 (2018)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Milton, G.W., Briane, M., Willis, J.R.: On cloaking for elasticity and physical equations with a transformation invariant form. New J. Phys. 8(10), 248 (2006)CrossRefGoogle Scholar
  31. 31.
    Milton, G.W., Golden, K.M.: Representations for the conductivity functions of multicomponent composites. Commun. Pure Appl. Math. (New York) 43(5), 647–671 (1990)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Milton, G.W., Seppecher, P., Guy, B.: Minimization variational principles for acoustics, elastodynamics and electromagnetism in lossy inhomogeneous bodies at fixed frequency. Proc. R. Soc. A: Math. Phys. Eng. Sci. 465(2102), 367–396 (2009)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Milton, G.W., Willis, J.R.: On modifications of Newton’s second law and linear continuum elastodynamics. Proc. R. Soc. A: Math. Phys. Eng. Sci. 463(2079), 855–880 (2007)MathSciNetCrossRefGoogle Scholar
  34. 34.
    Milton, G.W., Willis, J.R.: Minimum variational principles for time-harmonic waves in a dissipative medium and associated variational principles of Hashin–Shtrikman type. Proc. R. Soc. A: Math. Phys. Eng. Sci. 466(2122), 3013–3032 (2010)MathSciNetCrossRefGoogle Scholar
  35. 35.
    Milton, G.W. (ed.): Extending the Theory of Composites to Other Areas of Science. Milton–Patton Publishers, Salt Lake City (2016)Google Scholar
  36. 36.
    Moulinec, H., Suquet, P.M.: A fast numerical method for computing the linear and non-linear properties of composites. C. r. Séances l’Acad. Sci. Sér. II 318, 1417–1423 (1994)zbMATHGoogle Scholar
  37. 37.
    Müller, S., Šverák, V.: Convex integration for Lipschitz mappings and counterexamples to regularity. Ann. Math. 157(3), 715–742 (2003)MathSciNetCrossRefGoogle Scholar
  38. 38.
    Murat, F.: Compacité par compensation. Ann. Sc. Norm. Super. Pisa, Classe Sci. Ser. IV 5(3), 489–507 (1978). (French) [Compactness through compensation]zbMATHGoogle Scholar
  39. 39.
    Murat, F.: Compacité par compensation: condition nécessaire et suffisante de continuité faible sous une hypothése de rang constant. (French) [Compensated compactness: Necessary and sufficient conditions for weak continuity under a constant-rank hypothesis]. Ann. Sc. Norm. Super. Pisa, Classe Sci. Ser. IVGoogle Scholar
  40. 40.
    Murat, F.: A survey on compensated compactness. In: Cesari, L. (ed.) Contributions to Modern Calculus of Variations. Pitman Research Notes in Mathematics Series, vol. 148, pp. 145–183, Harlow, Essex (1987). Longman Scientific and Technical. Papers from the symposium marking the centenary of the birth of Leonida Tonelli held in Bologna, May 13–14, (1985)Google Scholar
  41. 41.
    Olver, P.J., Sivaloganathan, J.: The structure of null Lagrangians. Nonlinearity (Bristol) 1(2), 389–398 (1988)MathSciNetCrossRefGoogle Scholar
  42. 42.
    Pablo, P.: Weak continuity and weak lower semicontinuity for some compensation operators. Proc. R. Soc. Edinb. Sect. A, Math. Phys. Sci. 113(3–4), 267–279 (1989)MathSciNetzbMATHGoogle Scholar
  43. 43.
    Raitums, U.E.: On the local representation of \(G\)-closure. Arch. Ration. Mech. Anal. 158(3), 213–234 (2001)MathSciNetCrossRefGoogle Scholar
  44. 44.
    Schoenberg, M., Sen, P.N.: Properties of a periodically stratified acoustic half-space and its relation to a Biot fluid. J. Acoust. Soc. Am. 73(1), 61–67 (1983)CrossRefGoogle Scholar
  45. 45.
    Tartar, L.: Compensated compactness and applications to partial differential equations. In: Knops, R.J. (ed.) Nonlinear Analysis and Mechanics, Heriot–Watt Symposium, Volume IV. Research Notes in Mathematics, vol. 39, pp. 136–212. Pitman Publishing Ltd, London (1979)Google Scholar
  46. 46.
    Tartar, L.: Estimation de coefficients homogénéisés. (French) [Estimation of homogenization coefficients]. In: Glowinski, R., Lions, J.L. (eds.) Computing Methods in Applied Sciences and Engineering: Third International Symposium, Versailles, France, December 5–9, 1977. Lecture Notes in Mathematics, vol. 704 , pp. 364–373. Springer, Berlin (1979). English translation in Topics in the Mathematical Modelling of Composite Materials, pp. 9–20, Cherkaev, A., Kohn, R. (eds.). ISBN 0-8176-3662-5Google Scholar
  47. 47.
    Tartar, L.: The General Theory of Homogenization: A Personalized Introduction. Lecture Notes of the Unione Matematica Italiana. Springer, Berlin (2009)zbMATHGoogle Scholar
  48. 48.
    Thaler, A.E., Milton, G.W.: Exact determination of the volume of an inclusion in a body having constant shear modulus. Inverse Probl. 30(12), 125008 (2014)MathSciNetCrossRefGoogle Scholar
  49. 49.
    Torquato, S.: Random Heterogeneous Materials: Microstructure and Macroscopic Properties. Interdisciplinary Applied Mathematics, vol. 16. Springer, Berlin (2002)zbMATHGoogle Scholar
  50. 50.
    Willis, J.R.: The non-local influence of density variations in a composite. Int. J. Solids Struct. 21(7), 805–817 (1985)CrossRefGoogle Scholar
  51. 51.
    Zhang, K.: On the structure of quasiconvex hulls. Ann. l’Inst. Henri Poincaré. Anal. Linéaire 15(6), 663–686 (1998)MathSciNetCrossRefGoogle Scholar
  52. 52.
    Zhikov, V. V.: Estimates for the homogenized matrix and the homogenized tensor. Uspekhi Matematicheskikh Nauk = Russ. Math. Surv. 46:49–109 (1991). English translation in Russ. Math. Surv. 46(3):65–136 (1991)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of UtahSalt Lake CityUSA
  2. 2.Department of MathematicsUniversity of HoustonHoustonUSA

Personalised recommendations