Advertisement

On the stability of static domain wall profiles in ferromagnetic thin film

  • Sharad Dwivedi
  • Shruti Dubey
Research

Abstract

In this article, we consider a two-dimensional model of ferromagnetic material. Our prime goal is to analyze the stability of static domain wall configuration calculated by Walker. The dynamics of magnetization inside the material is governed by the Landau–Lifschitz equation which is nonlinear and parabolic in nature. We prove the stability of the static waves solutions for the Landau–Lifschitz equation with a simplified expression of the stray field which is not unique in general, because of the non-convexity constraint \(|u|=1\).

Keywords

Landau–Lifschitz equation Micromagnetics Domain walls Stability 

Mathematics Subject Classification

Primary 35B35 34D05 35Q60 Secondary 35K55 

References

  1. 1.
    Adams, R.A., Fournier, J.J.F.: Sobolev Spaces, Pure and Applied Mathematics, vol. 140. Academic Press, Cambridge (Access Online via Elsevier) (2003)Google Scholar
  2. 2.
    Agarwal, S., et al.: Control of a network of magnetic ellipsoidal samples. Math. Control Relat. Fields 1(2), 129–147 (2011)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Aharoni, A.: Introduction to the Theory of Ferromagnetism, vol. 109. Oxford University Press, Oxford (2000)Google Scholar
  4. 4.
    Alouges, F., et al.: Néel and cross-tie wall energies for planar micromagnetic configurations, A tribute to J.L. Lions. ESAIM Control Optim. Calc. Var. 8, 31–68 (2002)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Alouges, F., Beauchard, K.: Magnetization switching on small ferromagnetic ellipsoidal samples. ESAIM Control Optim. Calc. Var. 15, 676–711 (2009)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Alouges, F., Soyeur, A.: On global weak solutions for Landau–Lifshitz equations: existence and nonuniqueness. Nonlinear Anal. 18(11), 1071–1084 (1992)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Ban̆as, L., et al.: A convergent implicit finite element discretization of the Maxwell–Landau–Lifshitz–Gilbert equation. SIAM J. Numer. Anal. 46(3), 1399–1422 (2008)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Boust, F., et al.: 3D dynamic micromagnetic simulations of susceptibility spectra in soft ferromagnetic particles. ESAIM Proc. 22, 127–131 (2008)CrossRefGoogle Scholar
  9. 9.
    Brown, W.F.: Micromagnetics. Wiley, New York (1963)zbMATHGoogle Scholar
  10. 10.
    Carbou, G., et al.: Control of travelling walls in a ferromagnetic nanowire. Discrete Contin. Dyn. Syst. Ser. S 1(1), 51–59 (2008)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Carbou, G.: Stability of static walls for a three-dimensional model of ferromagnetic material. J. Math. Pures Appl. 93, 183–203 (2010)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Carbou, G., et al.: Global weak solutions for the Landau–Lifschitz equation with magnetostriction. Math. Methods Appl. Sci. 34(10), 1274–1288 (2011)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Carbou, G., Fabrie, P.: Time average in micromagnetism. J. Differ. Equ. 147(2), 383–409 (1998)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Carbou, G., Fabrie, P.: Regular solutions for Landau–Lifschitz equation in a bounded domain. Differ. Integral Equ. 14(2), 213–229 (2001)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Carbou, G., Fabrie, P.: Regular solutions for Landau–Lifschitz equation in \(\mathbb{R}^{3}\). Commun. Appl. Anal. 5(1), 17–30 (2001)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Carbou, G., Labbé, S.: Stability for static walls in ferromagnetic nanowires. Discrete Contin. Dyn. Syst. Ser. B 6(2), 273–290 (2006)MathSciNetzbMATHGoogle Scholar
  17. 17.
    DeSimone, A., et al.: Two-dimensional modelling of soft ferromagnetic films. R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci. 457(2016), 2983–2991 (2001)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Ding, S., et al.: Global existence of weak solutions for Landau–Lifshitz–Maxwell equations. Discrete Contin. Dyn. Syst. 17(4), 867–890 (2007)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Guo, B., Su, F.: Global weak solution for the Landau–Lifshitz–Maxwell equation in three space dimensions. J. Math. Anal. Appl. 211(1), 326–346 (1997)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Hubert, A., Schäfer, R.: Magnetic Domains: The Analysis of Magnetic Microstructures. Springer, Berlin (1998)Google Scholar
  21. 21.
    Kapitula, T.: On the stability of travelling waves in weighted \(L^{\infty }\) spaces. J. Differ. Equ. 112(1), 179–215 (1994)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Kapitula, T.: Multidimensional stability of planar travelling waves. Trans. Am. Math. Soc. 349(1), 257–269 (1997)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Labbé, S.: Fast computation for large magnetostatic systems adapted for micromagnetism. SISC SIAM J. Sci. Comput. 26(6), 2160–2175 (2005)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Landau, L., Lifschitz, E.: Electrodynamique des Milieux Continus, Cours de Physique Théorique, (French) [Electrodynamic of continuous Media, Theoretical Physics Course], vol. VIII. Mir, Moscow (1969)Google Scholar
  25. 25.
    Podio-Guidugli, P., Tomassetti, G.: On the steady motions of a flat domain wall in a ferromagnet. Eur. Phys. J. B Condens. Matter Complex Syst. 26(2), 191–198 (2002)zbMATHGoogle Scholar
  26. 26.
    Reed, M., Simon, B.: Methods of Modern Mathematical Physics. IV. Analysis of Operators. Academic Press, Inc., New York (1978)zbMATHGoogle Scholar
  27. 27.
    Schryer, N.L., Walker, L.R.: The motion of \(180^{\circ }\) domain walls in uniform dc magnetic fields. J. Appl. Phys. 45(12), 5406–5412 (1974)CrossRefGoogle Scholar
  28. 28.
    Visintin, A.: On Landau Lifschitz equation for ferromagnetism. Jpn. J. Appl. Math. 1(2), 69–84 (1985)CrossRefGoogle Scholar
  29. 29.
    Walker, L.R.: Bell telephone laboratories memorandum, 1956, unpublished; cf Dillon Jr., J.F. in A Treatise on Magnetism, vol. VIII, pp. 450–453, Rado, G.T., Suhl, H. (eds.). Academic Press (1963)Google Scholar

Copyright information

© SpringerNature 2018

Authors and Affiliations

  1. 1.SRM Research Institute and Department of MathematicsSRM Institute of Science and TechnologyChennaiIndia
  2. 2.Department of MathematicsIndian Institute of Technology MadrasChennaiIndia

Personalised recommendations