Detecting localized eigenstates of linear operators

  • Jianfeng Lu
  • Stefan SteinerbergerEmail author


We describe a way of detecting the location of localized eigenvectors of the eigenvalue problem \(Ax = \lambda x\) for eigenvalues \(\lambda \) with \(|\lambda |\) comparatively large. We define the family of functions \(f_{\alpha }: \left\{ 1,2, \dots , n\right\} \rightarrow {\mathbb {R}}_{}\)
$$\begin{aligned} f_{\alpha }(k) = \log \left( \Vert A^{\alpha } e_k \Vert _{\ell ^2} \right) , \end{aligned}$$
where \(\alpha \ge 0\) is a parameter and \(e_k = (0,0,\ldots , 0,1,0, \ldots , 0)\) is the kth standard basis vector. We prove that eigenvectors associated with eigenvalues with large absolute value localize around local maxima of \(f_{\alpha }\): the metastable states in the power iteration method (slowing down its convergence) can be used to predict localization. We present a fast randomized algorithm and discuss different examples: a random band matrix, discretizations of the local operator \(-\Delta + V\), and the nonlocal operator \((-\Delta )^{3/4} + V\).


Eigenvectors Localization Power iteration Randomized numerical linear algebra Anderson localization 

Mathematics Subject Classification

Primary 35P20 Secondary 82B44 



The research of J.L. was supported in part by the National Science Foundation under award DMS-1454939. He would also like to thank Yingzhou Li for helpful discussions.


  1. 1.
    Anderson, P.W.: Absence of diffusion in certain random lattices. Phys. Rev. 109, 1492–1505 (1958)CrossRefGoogle Scholar
  2. 2.
    Benzi, M., Boito, P., Razouk, N.: Decay properties of spectral projectors with applications to electronic structure. SIAM Rev. 55, 3–64 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Benzi, M.: Localization in Matrix Computation: Theory and Applications, Lecture Notes in Mathematics, vol. 2173, pp. 211–317. Springer, Berlin (2016)zbMATHGoogle Scholar
  4. 4.
    Bovier, A., Eckhoff, M., Gayrard, V., Klein, M.: Metastability and low lying spectra in reversible Markov chains. Commun. Math. Phys. 228(2), 219–255 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Bovier, A., Eckhoff, M., Gayrard, V., Klein, M.: Metastability in reversible diffusion processes. I. Sharp asymptotics for capacities and exit times. J. Eur. Math. Soc. 6(4), 399–424 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Bovier, A., Gayrard, V., Klein, M.: Metastability in reversible diffusion processes. II. Precise asymptotics for small eigenvalues. J. Eur. Math. Soc. 7(1), 69–99 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Cheng, X., Rachh, M., Steinerberger, S.: On the diffusion geometry of graph Laplacians and applications. Preprint, arXiv:1611.03033
  8. 8.
    Filoche, M., Mayboroda, S.: Universal mechanism for Anderson and weak localization. Proc. Natl. Acad. Sci. USA 109(37), 14761–14766 (2012)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Filoche, M., Mayboroda, S.: The landscape of Anderson localization in a disordered medium. Contemp. Math. 601, 113–121 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Halko, N., Martinsson, P.G., Tropp, J.A.: Finding structure with randomness: probabilistic algorithms for constructing approximate matrix decompositions. SIAM Rev. 53(2), 217–288 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Kenney, C., Laub, A.: Small-sample statistical condition estimates for general matrix functions. SIAM J. Sci. Comput. 15(1), 36–61 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Lefebvre, G., Gondel, A., Dubois, M., Atlan, M., Feppon, F., Labbe, A., Gillot, C., Garelli, A., Ernoult, M., Mayboroda, S., Filoche, M., Sebbah, P.: One single static measurement predicts wave localization in complex structures. Phys. Rev. Lett. 117, 074301 (2016)CrossRefGoogle Scholar
  13. 13.
    Lin, L., Lu, J.: Decay estimates of discretized Green’s functions for Schrödinger type operators. Sci. China Math. 59, 1561–1578 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Lyra, M., Mayboroda, S., Filoche, M.: Dual hidden landscapes in Anderson localization on discrete lattices. Eur. Phys. Lett. 109, 4700 (2015)CrossRefGoogle Scholar
  15. 15.
    Marzari, N., Mostofi, A.A., Yates, J.R., Souza, I., Vanderbilt, D.: Maximally localized Wannier functions: theory and applications. Rev. Mod. Phys. 84, 1419–1475 (2012)CrossRefGoogle Scholar
  16. 16.
    Steinerberger, S.: Localization of quantum states and landscape functions. Proc. Am. Math. Soc 45, 2895–2907 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Vempala, S.: The random projection method. With a foreword by Christos H. Papadimitriou. DIMACS Series in Discrete Mathematics and Theoretical Computer Science, vol. 65. American Mathematical Society, Providence, RI (2004)Google Scholar
  18. 18.
    Vömel, Ch., Parlett, B.N.: Detecting localization in an invariant subspace. SIAM J. Sci. Comput. 33, 3447–3467 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Wannier, G.: The structure of electronic excitation levels in insulating crystals. Phys. Rev. 52, 191 (1937)CrossRefzbMATHGoogle Scholar
  20. 20.
    Weinan, E., Li, Tiejun, Lu, Jianfeng: Localized bases of eigensubspaces and operator compression. Proc. Natl. Acad. Sci. USA 107, 1273–1278 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Zou, H., Hastie, T., Tibshirani, R.: Sparse principal component analysis. J. Comput. Graph. Stat. 15, 262–286 (2006)MathSciNetCrossRefGoogle Scholar

Copyright information

© SpringerNature 2018

Authors and Affiliations

  1. 1.Department of MathematicsDuke UniversityDurhamUSA
  2. 2.Department of PhysicsDuke UniversityDurhamUSA
  3. 3.Department of ChemistryDuke UniversityDurhamUSA
  4. 4.Department of MathematicsYale UniversityNew HavenUSA

Personalised recommendations