Effects of Elemental Alloying on Surface Integrity in Joining of Composite Powders with Heterogeneous Titanium Substrates Using Selective Laser Melting

  • Chunliang KuoEmail author
  • Pinxian Ye
  • Jhihjie Liu
Regular Paper


This work outlines advances in material savings on lightweight structure when using additive manufacturing technology in conjunction with laser melting for joining and strengthening of layered Ti-6Al-4V composite powders on commercially pure Ti substrates. The migration of the extrinsic elemental alloys in the titanium composite powders strengthens the matrix structure, particularly in the heat affected zone beneath the joining surface. In the analysis of the main effect and variance (ANOVA), the optimised operating parameters for preferable energy density could increase the elemental migration (aluminium: ~ 3.63 at%, vanadium: ~ 3.31 at%) with appreciable penetration depth, high microhardness (> 440 HV0.3) and a strengthened microstructure. In the confirmation tests, high tensile strength was achieved (1119.2 MPa) with high microhardness (> 440 HV0.3) through the strengthening effects produced by the proper elemental migration under the application of high energy density (> 650 kW/mm3). The composite structure of the lamellar microstructure and phase transformation induced by the Al and V elements spreading into the α-titanium matrix in the substrate are presented and discussed in the variety of parameter combinations.


Selective laser melting Composite powder Mechanical strength Elemental migration Microhardness Microstructure 

List of symbols


Exerted energy

\(\dot{E}_{in, net}\)

Energy input


The stored energy


Average input laser power




Internal energy


Output work


Specific heat capacity


Product of \(dw\), \(dh\), \(dv\) and \(dt\)


Layer thickness


Thermal conductivity




Scanning speed


Hatch distance







The authors would like to thank the Taiwan Ministry of Science and Technology for providing financial support (MOST 107-2221-E-011-093). We would also like to express our gratitude to the postgraduate students, Mr. Anchun Chiang and Mr. Kuoming Lu, for their technical advice and support in the experimental work.

Compliance with ethical standards

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.


  1. 1.
    Elsheikhi, S., & Benyounis, K. (2016). Review of recent developments in injection molding process for polymeric materials. In Reference Module in Materials Science and Materials Engineering. ‎Amsterdam, Netherlands: Elsevier. Scholar
  2. 2.
    Pan, F., Yang, M., & Chen, X. (2016). A review on casting magnesium alloys: Modification of commercial alloys and development of new alloys. Journal of Materials Science and Technology,32(12), 1211–1221. Scholar
  3. 3.
    Leo, P., D’Ostuni, S., & Casalino, G. (2018). Low temperature heat treatments of AA5754-Ti6Al4V dissimilar laser welds: Microstructure evolution and mechanical properties. Optics and Laser Technology,100, 109–118. Scholar
  4. 4.
    Yu, M., Zhao, H., Jiang, Z., Guo, F., Zhou, L., & Song, X. (2019). Microstructure and mechanical properties of friction stir lap AA6061-Ti6Al4V welds. Journal of Materials Processing Technology,270, 274–284. Scholar
  5. 5.
    Wohlers, T., Caffrey, T., Campbell, R. I., Diegel, O., & Kowen, J. (2018). Wohlers report 2018: 3D printing and additive manufacturing state of the industry; Annual Worldwide Progress Report. Fort Collins: Wohlers Associates.Google Scholar
  6. 6.
    Lee, H., Lim, C. H. J., Low, M. J., Tham, N., Murukeshan, V. M., & Kim, Y.-J. (2017). Lasers in additive manufacturing: A review. International Journal of Precision Engineering and Manufacturing-Green Technology,4(3), 307–322. Scholar
  7. 7.
    Ahn, D.-G. (2016). Direct metal additive manufacturing processes and their sustainable applications for green technology: A review. International Journal of Precision Engineering and Manufacturing-Green Technology,3(4), 381–395. Scholar
  8. 8.
    Shipley, H., McDonnell, D., Culleton, M., Coull, R., Lupoi, R., O’Donnell, G., et al. (2018). Optimisation of process parameters to address fundamental challenges during selective laser melting of Ti-6Al-4V: A review. International Journal of Machine Tools and Manufacture,128, 1–20. Scholar
  9. 9.
    Chua, Z. Y., Ahn, I. H., & Moon, S. K. (2017). Process monitoring and inspection systems in metal additive manufacturing: Status and applications. International Journal of Precision Engineering and Manufacturing-Green Technology,4(2), 235–245. Scholar
  10. 10.
    Mezzetta, J., Choi, J.-P., Milligan, J., Danovitch, J., Chekir, N., Bois-Brochu, A., et al. (2018). Microstructure-properties relationships of Ti-6Al-4V parts fabricated by selective laser melting. International Journal of Precision Engineering and Manufacturing-Green Technology,5(5), 605–612. Scholar
  11. 11.
    Kruth, J. P., Levy, G., Klocke, F., & Childs, T. H. C. (2007). Consolidation phenomena in laser and powder-bed based layered manufacturing. CIRP Annals,56(2), 730–759. Scholar
  12. 12.
    Masoomi, M., Thompson, S. M., & Shamsaei, N. (2017). Laser powder bed fusion of Ti-6Al-4V parts: Thermal modeling and mechanical implications. International Journal of Machine Tools and Manufacture,118–119, 73–90. Scholar
  13. 13.
    Chua, B.-L., Lee, H.-J., & Ahn, D.-G. (2018). Estimation of effective thermal conductivity of Ti-6Al-4V powders for a powder bed fusion process using finite element analysis. International Journal of Precision Engineering and Manufacturing,19(2), 257–264. Scholar
  14. 14.
    Osakada, K., & Shiomi, M. (2006). Flexible manufacturing of metallic products by selective laser melting of powder. International Journal of Machine Tools and Manufacture,46(11), 1188–1193. Scholar
  15. 15.
    Das, S. (2003). Physical aspects of process control in selective laser sintering of metals. Advanced Engineering Materials,5(10), 701–711. Scholar
  16. 16.
    Gu, D., & Shen, Y. (2007). Balling phenomena during direct laser sintering of multi-component Cu-based metal powder. Journal of Alloys and Compounds,432(1), 163–166. Scholar
  17. 17.
    Wei, Q., Li, S., Han, C., Li, W., Cheng, L., Hao, L., et al. (2015). Selective laser melting of stainless-steel/nano-hydroxyapatite composites for medical applications: Microstructure, element distribution, crack and mechanical properties. Journal of Materials Processing Technology,222, 444–453. Scholar
  18. 18.
    Sing, S. L., Yeong, W. Y., & Wiria, F. E. (2016). Selective laser melting of titanium alloy with 50 wt% tantalum: Microstructure and mechanical properties. Journal of Alloys and Compounds,660, 461–470. Scholar
  19. 19.
    Attar, H., Bönisch, M., Calin, M., Zhang, L.-C., Scudino, S., & Eckert, J. (2014). Selective laser melting of in situ titanium–titanium boride composites: Processing, microstructure and mechanical properties. Acta Materialia,76, 13–22. Scholar
  20. 20.
    Attar, H., Calin, M., Zhang, L. C., Scudino, S., & Eckert, J. (2014). Manufacture by selective laser melting and mechanical behavior of commercially pure titanium. Materials Science and Engineering A,593, 170–177. Scholar
  21. 21.
    Renishaw plc. (2019). Data sheet: Ti6Al4V ELI-0406 powder for additive manufacturing. Accessed 18 Nov 2019.
  22. 22.
    Leyens, C., & Peters, M. (2003). Structure and properties of titanium and titanium alloys. In Titanium and titanium alloys: Fundamentals and applications (pp. 19–21). Weinheim: Wiley-VCH.CrossRefGoogle Scholar

Copyright information

© Korean Society for Precision Engineering 2019

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringNational Taiwan University of Science and TechnologyTaipeiTaiwan ROC
  2. 2.High Speed 3D Printing Research CenterNational Taiwan University of Science and TechnologyTaipeiTaiwan ROC

Personalised recommendations