Advertisement

Experimental and Numerical Investigation on Power Characteristics of 300 W Class Horizontal Axis Wind Turbine with Wave Winding Type AFPM Generator

  • Seong-Hwan Kim
  • Kwonhee SuhEmail author
Regular Paper
  • 62 Downloads

Abstract

This paper focuses on the power characteristics of a 300 W class horizontal axis wind turbine (HAWT) equipped with wave winding type axial flux permanent magnet (AFPM) generator. The small HAWT of this study is downwind type and installed with three high speed blades. Structural design for AFPM generator and wind turbine is carried out, and a fixture device for AFPM generator is developed. The developed AFPM generator is direct drive type and its basic performances are evaluated through no-load and load test. A wind tunnel test of the small HAWT equipped with wave winding type AFPM generator is conducted and the electrical power of the developed wind turbine is calculated. Also, based on the detailed design of the new small HAWT, CFD analysis is performed to calculate the mechanical power. Finally, the numerical power and the experimental power of the developed small HAWT are compared. The maximum coefficient of power of the HAWT is 0.34 at 6.7 m/s due to the application of the new wave winding type AFPM generator.

Keywords

Wave winding Axial flux permanent magnet generator Horizontal axis wind turbine Computational fluid dynamics Coefficient of power 

Notes

References

  1. 1.
    Dai, K., Bergot, A., Liang, C., Xiang, W. N., & Huang, Z. (2015). Environmental issues associated with wind energy—A review. Renewable Energy, 75, 911–921.CrossRefGoogle Scholar
  2. 2.
    Danao, L. A., Edwards, J., Eboibi, O., & Howell, R. (2014). A numerical investigation into the influence of unsteady wind on the performance and aerodynamics of a vertical axis wind turbine. Applied Energy, 116, 111–124.CrossRefGoogle Scholar
  3. 3.
    Thé, J., & Yu, H. (2017). A critical review on the simulations of wind turbine aerodynamics focusing on hybrid RANS-LES methods. Energy, 138, 257–289.CrossRefGoogle Scholar
  4. 4.
    Luo, Y., Chen, Y., Yang, H., & Wang, Y. (2017). Study on an internally-cooled liquid desiccant dehumidifier with CFD model. Applied Energy, 194, 399–409.CrossRefGoogle Scholar
  5. 5.
    Li, C., Xiao, Y., Xu, Y., Peng, Y., Hu, G., & Zhu, S. (2018). Optimization of blade pitch in H-rotor vertical axis wind turbines through computational fluid dynamics simulations. Applied Energy, 212, 1107–1125.CrossRefGoogle Scholar
  6. 6.
    Chong, W., Muzammil, W. K., Wong, K., Wang, C., Gwani, M., Chu, Y., et al. (2017). Cross axis wind turbine: Pushing the limit of wind turbine technology with complementary design. Applied Energy, 207(1), 78–95.CrossRefGoogle Scholar
  7. 7.
    Govind, B. (2017). Increasing the operational capability of a horizontal axis wind turbine by its integration with a vertical axis wind turbine. Applied Energy, 199(1), 479–494.CrossRefGoogle Scholar
  8. 8.
    Wang, Z., & Zhuang, M. (2017). Leading-edge serrations for performance improvement on a vertical-axis wind turbine at low tip-speed-ratios. Applied Energy, 208(15), 1184–1197.CrossRefGoogle Scholar
  9. 9.
    Kumbernuss, J., Jian, C., Wang, J., Yang, H. X., & Fu, W. N. (2012). A novel magnetic levitated bearing system for vertical axis wind turbines (VAWT). Applied Energy, 90(1), 148–153.CrossRefGoogle Scholar
  10. 10.
    Chen, J., Liu, P., Xu, H., Chen, L., Yang, M., & Yang, L. (2017). A detailed investigation of a novel vertical axis Darrieus wind rotor with two sets of blades. Journal of Renewable and Sustainable Energy, 9(1), 0133071.Google Scholar
  11. 11.
    Rezaeiha, A., Kalkman, I., & Blocken, B. (2017). Effect of pitch angle on power performance and aerodynamics of a vertical axis wind turbine. Applied Energy, 197, 132–150.CrossRefGoogle Scholar
  12. 12.
    Wang, J., Zhou, S., Zhang, Z., & Yurchenko, D. (2019). High-performance piezoelectric wind energy harvester with Y-shaped attachments. Energy Conversion and Management, 181, 645–652.CrossRefGoogle Scholar
  13. 13.
    Zhou, S., & Wang, J. (2018). Dual serial vortex-induced energy harvesting system for enhanced energy harvesting. AIP Advances, 8(7), 075221.CrossRefGoogle Scholar
  14. 14.
    Eriksson, S., Bernhoff, H., & Leijon, M. (2008). Evaluation of different turbine concepts for wind power. Renewable and Sustainable Energy Reviews, 12, 1419–1434.CrossRefGoogle Scholar
  15. 15.
    Adomavičius, V., Watkowski, T., Žilinskas, E., Adomavičius, A. (2009). Comparison of small scale wind turbines’ properties. In Proceedings of international conference “electrical and control technologies -2009”. KTU, Kaunas (pp. 374–379).Google Scholar
  16. 16.
    Tummala, A., Velamati, R. K., Sinha, D. K., Indraja, V., & Krishna, V. H. (2016). A review on small scale wind turbines. Renewable and Sustainable Energy Reviews, 56, 1351–1371.CrossRefGoogle Scholar
  17. 17.
    Li, Q., Maeda, T., Kamada, Y., & Hiromori, Y. (2018). Investigation of wake characteristic of a 30 kW rated power Horizontal Axis Wind Turbine with wake model and field measurement. Applied Energy, 225, 1190–1204.CrossRefGoogle Scholar
  18. 18.
    Sainz, J. A. (2015). New wind turbine manufacturing techniques. Procedia Engineering, 132, 880–886.CrossRefGoogle Scholar
  19. 19.
    Islam, M. R., Guo, Y., & Zhu, J. (2014). A review of offshore wind turbine nacelle: Technical challenges, and research and developmental trends. Renew Sustain Energy Reviews, 33, 161–176.CrossRefGoogle Scholar
  20. 20.
    Sola, P. J., McDonald, A. S., & Oterkus, E. (2019). Lightweight design of direct-drive wind turbine electrical generators: A comparison between steel and composite material structures. Ocean Engineering, 181, 330–341.CrossRefGoogle Scholar
  21. 21.
    Mishnaevsky, L., Branner, K., Petersen, H. N., Beauson, J., McGugan, M., & Sørensen, B. F. (2017). Materials for wind turbine blades: An overview. Materials, 10, 1285.CrossRefGoogle Scholar
  22. 22.
    Thomas, L., & Ramachandra, M. (2018). Advanced materials for wind turbine blade—A Review. Materials Today: Proceedings, 5, 2635–2640.Google Scholar
  23. 23.
    Chung, D. W., & You, Y. M. (2015). Cogging torque reduction in permanent-magnet brushless generators for small wind turbines. Journal of Magnetics, 20(2), 176–185.CrossRefGoogle Scholar
  24. 24.
    Lee, K. K., Ro, Y. C., Kim, Y. G., Lee, K. H., & Han, S. H. (2014). Shape optimization for light weight design of direct-drive generator in large-scale wind turbine. International Journal of Precision Engineering And Manufacturing, 15(10), 2101–2108.CrossRefGoogle Scholar
  25. 25.
    Sitapati, K., & Krishnan, R. (2001). Performance comparisons of radial and axial field, permanent-magnet, brushless machines. IEEE Transactions on Industry Applications, 37(5), 1219–1226.CrossRefGoogle Scholar
  26. 26.
    Garate, J., Solovitz, S. A., & Kim, D. (2018). Fabrication and performance of segmented thermoplastic composite wind turbine blades. International Journal of Precision Engineering and Manufacturing-Green Technology, 5(2), 271–277.CrossRefGoogle Scholar
  27. 27.
    Laxminarayan, S. S., Singh, M., Saifee, A. H., & Mittal, A. (2017). Design, modeling and simulation of variable speed Axial Flux Permanent Magnet Wind Generator. Sustainable Energy Technologies and Assessments, 19, 114–124.CrossRefGoogle Scholar
  28. 28.
    Xia, B., Shen, J. X., Luk, P. C. K., & Fei, W. (2014). Comparative study of air-cored axial flux permanent magnet machines with different stator winding configurations. IEEE Transaction on Industrial Electronics, 62, 846–856.CrossRefGoogle Scholar
  29. 29.
    Nasrin, L. (2011). Improved version of energy efficient motor for shell eco marathon-half weight with higher efficiency. Master of Science in Electric Power Engineering, Norwegian University of Science and Technology.Google Scholar
  30. 30.
    Bang, D., Polinder, H., Shrestha, G., Ferreira, J.A. (2008). Review of generator systems for direct-drive wind turbines. In European wind energy conference & exhibition, Belgium (p. 31).Google Scholar
  31. 31.
    Gieras, J. F., Wang, R. J., & Kamper, M. J. (2004). Axial flux permanent magnet brushless machines. Dordrecht: Kluwer Academic.Google Scholar
  32. 32.
    Lok, C. L., Vengadaesvaran, B., & Ramesh, S. (2017). Implementation of hybrid pattern search–genetic algorithm into optimizing axial-flux permanent magnet coreless generator (AFPMG). Electrical Engineering, 99, 751–761.CrossRefGoogle Scholar
  33. 33.
    Stubkier, S., & Pedersen, H. C. (2013). Investigation of self yaw and its potential using a hydraulic soft yaw system for 5 MW wind turbine. Wind Engineering, 37, 165–182.CrossRefGoogle Scholar
  34. 34.
    Kim, M. G., & Dalho, P. H. (2014). Yaw Systems for wind turbines—Overview of concepts, current challenges and design methods. Journal of Physics: Conference Series, 524, 012086.Google Scholar
  35. 35.
    Wu, Z., & Wang, H. (2016). Research on active yaw mechanism of small wind turbines. Energy Procedia, 16, 53–57.CrossRefGoogle Scholar
  36. 36.
    Yoo, C. H., Park, J. H., & Park, S. S. (2018). Design and evaluation of performance tester for yaw brakes in wind turbines. International Journal of Precision Engineering And Manufacturing-Green Tech, 5(1), 81–87.CrossRefGoogle Scholar
  37. 37.
    Kim, Y., Park, J., Lee, N. K., & Yoon, J. (2017). Profile design of loop-type blade for small wind turbine. International Journalof Precision Engineering and Manufacturing-Green Technology, 4(4), 387–392.CrossRefGoogle Scholar
  38. 38.
    Menter, F. R., Kuntz, M., & Ten Langtry, R. (2003). Years of industrial experience with the SST turbulence model. Heat Mass Transfer, 4, 625–632.Google Scholar
  39. 39.
    ANSYS. (2016). ANSYS CFX-Solver Theory Guide, release 17.1, ANSYS Inc.Google Scholar
  40. 40.
    Balduzzi, F., Bianchini, A., Maleci, R., Ferrara, G., & Ferrari, L. (2016). Critical issues in the CFD simulation of Darrieus wind turbines. Renewable Energy, 85, 419–435.CrossRefGoogle Scholar
  41. 41.
    Shahizare, B., Nik-Ghazali, N., Chong, W. T., Tabatabaeikia, S., Izadyar, N., & Esmaeilzadeh, A. (2016). Novel investigation of the different Omni-direction-guide-vane angles effects on the urban vertical axis wind turbine output power via three-dimensional numerical simulation. Energy Conversion and Management, 117, 206–217.CrossRefGoogle Scholar
  42. 42.
    International Standard IEC 61400-12-1. (2005). Wind turbines—Part 12-1: Power performance measurements of electricity producing wind turbines.Google Scholar
  43. 43.
    Tong, Wei. (2010). Wind power generation and wind turbine design (pp. 26–27). Southampton: WIT.Google Scholar
  44. 44.
    Sedaghatizadeh, N., Arjomandi, M., Kelso, R., Cazzolato, B., & Ghayesh, M. H. (2019). The effect of the boundary layer on the wake of a horizontal axis wind turbine. Energy, 182, 1202–1221.CrossRefGoogle Scholar
  45. 45.
    Rezaeiha, A., Montazeri, H., & Blocken, B. (2018). Towards accurate CFD simulations of vertical axis wind turbines at different tip speed ratios and solidities: Guidelines for azimuthal increment, domain size and convergence. Energy Conversion and Management, 156, 301–316.CrossRefGoogle Scholar
  46. 46.
    Mohamed, M. H., Ali, A. M., & Hafiz, A. A. (2015). CFD analysis for H-rotor Darrieus turbine as a low speed wind energy converter. Engineering Science and Technology, an International Journal, 18, 1–13.CrossRefGoogle Scholar
  47. 47.
    Rezaeiha, A., Montazeri, H., & Blocken, B. (2019). On the accuracy of turbulence models for CFD simulations of vertical axis wind turbines. Energy, 180, 838–857.CrossRefGoogle Scholar

Copyright information

© Korean Society for Precision Engineering 2019

Authors and Affiliations

  1. 1.Department of MechatronicsKorea Polytechnic VII CollegeBusanSouth Korea
  2. 2.Military Vehicle Development TeamKia Motors CorporationGwangjuSouth Korea

Personalised recommendations