Efficiency of Origami-Based Vacuum Pneumatic Artificial Muscle for Off-Grid Operation

  • Jin-Gyu Lee
  • Hugo RodrigueEmail author
Regular Paper


Soft pneumatic actuators using either pressurized air or vacuum pressure are the soft actuators with the most potential for real-life applications, but their energy efficiency has not been studied in much detail. In this work, a model-based method is presented that can predict the energy efficiency of origami-based vacuum pneumatic artificial muscles (OV-PAMs) while considering the characteristics of the pump used. This model was applied using both the manufacturer’s data and experimental data to extrapolate the efficiency and flow rate of the pump which can then be used to optimize the dimensions of the actuator based on the target payload. It is then demonstrated that OV-PAMs can be used as a lightweight, low-cost, portable and powerful actuation solution paired with either batteries or solar panels and lightweight pumps. By optimizing its parameters, it will be possible to implement this actuator for the automation of low-cost off-grid operations and for field robots that can collaborate with humans.


Soft actuator Vacuum actuator Actuator efficiency Renewable energy Off-grid robotics 

List of Symbols


Output mechanical work of the actuator


Input work of the pump


Current height of the chamber between two reinforcements


Initial height of the chamber between two reinforcements


Internal angle of the actuator


Volume of the actuator


Force produced by the actuator


Width of the sides of the actuator


Estimated time required to actuate the actuator between two states


Initial volume of the actuator before actuation


Final volume of the actuator after actuation


Absolute pressure within the actuator


Energy used to actuate the actuator


Power used by the pump during actuation


Total efficiency of the system


Efficiency of the pump


Efficiency of the actuator


Efficiency of the system



This work was supported by the Technology Innovation Program (or Industrial Strategic Technology Development Program (10080336) funded By the Ministry of Trade, Industry & Energy(MI, Korea), and by the National Research Foundation of Korea(NRF) grant funded by the Korea government (Ministry of Science, ICT & Future Planning) (no. 2018R1C1B6003990).

Compliance with Ethical Standards

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.


  1. 1.
    Laschi, C., & Cianchetti, M. (2014). Soft robotics: New perspectives for robot bodyware and control. Frontiers in Bioengineering and Biotechnology, 2, 3.Google Scholar
  2. 2.
    Rus, D., & Tolley, M. T. (2015). Design, fabrication and control of soft robots. Nature, 521(7553), 467–475.Google Scholar
  3. 3.
    Cianchetti, M., Laschi, C., Menciassi, A., & Dario, P. (2018). Biomedical applications of soft robotics. Nature Reviews Materials, 3(6), 143–153.Google Scholar
  4. 4.
    Rodrigue, H., Wang, W., Bhandari, B., Han, M.-W., & Ahn, S.-H. (2014). Cross-shaped twisting structure using SMA-based smart soft composite. International Journal of Precision Engineering and Manufacturing-Green Technology, 1(2), 153–156.Google Scholar
  5. 5.
    Rodrigue, H., Wang, W., Han, M.-W., Kim, T. J. Y., & Ahn, S.-H. (2017). An overview of shape memory alloy-coupled actuators and robots. Soft Robotics, 4(1), 3–15.Google Scholar
  6. 6.
    Miriyev, A., Stack, K., & Lipson, H. (2017). Soft material for soft actuators. Nature Communications, 8(1), 596.Google Scholar
  7. 7.
    Park, J., Yoo, J. W., Seo, H. W., Lee, Y., Suhr, J., Moon, H., et al. (2017). Electrically controllable twisted-coiled artificial muscle actuators using surface-modified polyester fibers. Smart Materials and Structures, 26, 035048.Google Scholar
  8. 8.
    Nguyen, C. T., Phung, H., Nguyen, T. D., Jung, H., & Choi, H. R. (2017). Multiple-degrees-of-freedom dielectric elastomer actuators for soft printable hexapod robot. Sensors and Actuators A: Physical, 267, 505–516.Google Scholar
  9. 9.
    Shepherd, R. F., Ilievski, F., Choi, W., Morin, S. A., Stokes, A. A., Mazzeo, A. D., et al. (2011). Multigait soft robot. Proceedings of the National Academy of Sciences of the United States of America, 108(51), 20400–20403.Google Scholar
  10. 10.
    Martinez, R. V., Glavan, A. C., Keplinger, C., Oyetibo, A. I., & Whitesides, G. M. (2014). Soft actuators and robots that are resistant to mechanical damage. Advanced Functional Materials, 24(20), 3003–3010.Google Scholar
  11. 11.
    Marchese, A. D., Onal, C. D., & Rus, D. (2014). Autonomous soft robotic fish capable of escape maneuvers using fluidic elastomer actuators. Soft Robotics, 1(1), 75–87.Google Scholar
  12. 12.
    Shepherd, R. F., Stokes, A. A., Freake, J., Barber, J., Snyder, P. W., Mazzeo, A. D., et al. (2013). Using explosions to power a soft robot. Angewandte Chemie, 52(10), 2892–2896.Google Scholar
  13. 13.
    Polygerinos, P., Galloway, K. C., Sanan, S., Herman, M. & Walsh, C. J. (2015). EMG controlled soft robotic glove for assistance during activities of daily living. Proceedings of IEEE International Conference on Rehabilitation Robotics (ICORR), pp. 55–60.Google Scholar
  14. 14.
    Polygerinos, P., Wang, Z., Galloway, K. C., Wood, R. J., & Walsh, C. J. (2015). Soft robotic glove for combined assistance and at-home rehabilitation. Robotics and Autonomous Systems, 73, 135–143.Google Scholar
  15. 15.
    Yun, S.-S., Kang, B. B., & Cho, K.-J. (2017). Exo-glove PM: An easily customizable modularized pneumatic assistive glove. IEEE Robotics and Automation Letters, 2(3), 1725–1732.Google Scholar
  16. 16.
    Udupa, G., Sreedharan, P., Sai Dinesh, P., & Kim, D. (2014). Asymmetric bellow flexible pneumatic actuator for miniature robotic soft gripper. Journal of Robotics, 2014, 1–11.Google Scholar
  17. 17.
    Deimel, R., & Brock, O. (2015). A novel type of compliant, underactuated robotic hand for dexterous grasping. The International Journal of Robotics Research, 35(1–3), 161–185.Google Scholar
  18. 18.
    Ham, K., Han, J., & Park, Y.-J. (2018). Soft gripper using variable stiffness mechanism and its application. International Journal of Precision Engineering and Manufacturing, 19(4), 487–494.Google Scholar
  19. 19.
    Choi, C.-P., & Hannaford, B. (1996). Measurement and modeling of McKibben pneumatic artificial muscles. IEEE Transactions on Robotics and Automation, 12(1), 90–102.Google Scholar
  20. 20.
    Villegas, D., Van Damme, M., Vanderborght, B., Beyl, P., & Lefeber, D. (2012). Third-generation pleated pneumatic artificial muscles for robotic applications: development and comparison with McKibben muscle. Advanced Robotics, 26(11–12), 1205–1227.Google Scholar
  21. 21.
    Ba, D. X., & Ahn, K. K. (2018). A robust time-delay nonlinear controller for a pneumatic artificial muscle. International Journal of Precision Engineering and Manufacturing, 19(1), 23–30.Google Scholar
  22. 22.
    Greer, J. D., Morimoto, T. K., Okamura, A. M. & Hawkes, E. W. (2017). Series pneumatic artificial muscles (sPAMs) and application to a soft continuum robot. Proceedings of 2017 IEEE International Conference on Robotics and Automation (ICRA).Google Scholar
  23. 23.
    Niiyama, R., Sun, X., Sung, C., An, B., Rus, D., & Kim, S. (2015). Pouch motors: Printable soft actuators integrated with computational design. Soft Robotics, 2(2), 59–70.Google Scholar
  24. 24.
    Ahn, C. H., Wang, W., Jung, J., & Rodrigue, H. (2019). Pleated film-based soft twisting actuator. International Journal of Precision Engineering and Manufacturing, 20(7), 1149–1158.Google Scholar
  25. 25.
    Han, K., Kim, N. H., & Shin, D. (2018). A novel soft pneumatic artificial muscle with high-contraction ratio. Soft Robotics, 5(5), 554–566.Google Scholar
  26. 26.
    Yang, D., Verma, M. S., So, J.-H., Mosadegh, B., Keplinger, C., Lee, B., et al. (2016). Buckling pneumatic linear actuators inspired by muscle. Advanced Materials Technologies, 1(3), 1600055.Google Scholar
  27. 27.
    Yang, D., Verma, M. S., Lossner, E., Stothers, D., & Whitesides, G. M. (2017). Negative-pressure soft linear actuator with a mechanical advantage. Advanced Materials Technologies, 2(1), 1600164.Google Scholar
  28. 28.
    Verma, M. S., Ainla, A., Yang, D., Harburg, D., & Whitesides, G. M. (2018). A soft tube-climbing robot. Soft Robot, 5(2), 133–137.Google Scholar
  29. 29.
    Li, S., Vogt, D. M., Rus, D., & Wood, R. J. (2017). Fluid-driven origami-inspired artificial muscles. Proceedings of the National Academy of Sciences of the United States of America, 114(50), 13132–13137.Google Scholar
  30. 30.
    Lee, J.-G., & Rodrigue, H. (2019). Origami-based vacuum pneumatic artificial muscles with large contraction ratios. Soft Robotics, 6(1), 109–117.Google Scholar
  31. 31.
    Nagy, Z., Svetozarevic, B., Jayathissa, P., Begle, M., Hofer, J., Lydon, G., et al. (2016). The adaptive solar facade: from concept to prototypes. Frontiers of Architectural Research, 5(2), 143–156.Google Scholar
  32. 32.
    Wang, W., Li, C., Rodrigue, H., Yuan, F., Han, M.-W., Cho, M., et al. (2017). Kirigami/origami-based soft deployable reflector for optical beam steering. Advanced Functional Materials, 27(7), 1604214.Google Scholar
  33. 33.
    Wehner, M., Tolley, M. T., Mengüç, Y., Park, Y.-L., Mozeika, A., Ding, Y., et al. (2014). Pneumatic energy sources for autonomous and wearable soft robotics. Soft Robotics, 1(4), 263–274.Google Scholar
  34. 34.
    Wehner, M., Truby, R. L., Fitzgerald, D. J., Mosadegh, B., Whitesides, G. M., Lewis, J. A., et al. (2016). An integrated design and fabrication strategy for entirely soft, autonomous robots. Nature, 536(7617), 451–455.Google Scholar
  35. 35.
    Marchese, A. D., Onal, C. D., & Rus, D. (2011). Soft robot actuators using energy-efficient valves controlled by electropermanent magnets. IEEE/RSJ International Conference on Intelligent Robots and Systems, 2011, 756–761.Google Scholar
  36. 36.
    Shui, L., Zhu, L., Yang, Z., Liu, Y., & Chen, X. (2017). Energy efficiency of mobile soft robots. Soft Matter, 13(44), 8223–8233.Google Scholar
  37. 37.
    Ross, D., Nemitz, M. P., & Stokes, A. A. (2016). Controlling and simulating soft robotic systems: insights from a thermodynamic perspective. Soft Robotics, 3(4), 170–176.Google Scholar
  38. 38.
    Bhandari, B., Lee, K.-T., Chu, W.-S., Lee, C. S., Song, C.-K., Bhandari, P., et al. (2017). Socio-economic impact of renewable energy-based power system in mountainous villages of Nepal. International Journal of Precision Engineering and Manufacturing-Green Technology, 4(1), 37–44.Google Scholar
  39. 39.
    Park, S., Han, G. D., Koo, J., Choi, H. J., & Shim, J. H. (2019). Profitable production of stable electrical power using wind-battery hybrid power systems: A case study from Mt. Taegi, South Korea. International Journal of Precision Engineering and Manufacturing-Green Technology, 6(3), 667.Google Scholar

Copyright information

© Korean Society for Precision Engineering 2019

Authors and Affiliations

  1. 1.School of Mechanical EngineeringSungkyunkwan UniversitySuwonRepublic of Korea

Personalised recommendations