Advertisement

Optimization of Electrospinning Parameters for Electrospun Nanofiber-Based Triboelectric Nanogenerators

  • Shin Jang
  • Yeongjun Kim
  • Samgon Lee
  • Je Hoon OhEmail author
Regular Paper
  • 52 Downloads

Abstract

In this study, the effects of various fabrication parameters on the electrical performance of an electrospun nanofiber-based triboelectric nanogenerator (EN-TENG) are systematically investigated through the design of experiments. We selected four fabrication parameters to examine, namely: (i) working distance (needle to collector distance), (ii) needle gauge, (iii) electrospinning time, and (iv) counter materials. A mixed orthogonal array of L18 experiments was designed with respect to the one factor having two level values and three factors having three level values. The open circuit voltage of the EN-TENG was varied from 86.1 to 576.7 V with the aforementioned fabrication parameters. A longer working distance, a larger needle gauge, and a longer electrospinning time increased the open circuit voltage. The power density of the optimized EN-TENG was approximately 2.39 W/m2 at a 100 MΩ load resistance and was sufficient to illuminate a total of 200 LEDs.

Keywords

Triboelectric nanogenerator Electrospinning P(VDF-TrFE) Nanofibers Design of experiments 

List of Symbols

ρA

Charge density on the surface of the contact materials

Q

Transferred charges

ε0

Relative permittivity of the air

εr

Relative permittivity of contact material

d

Thickness of the contact material

x(t)

Distance variation between the contact materials

Notes

Acknowledgements

This work was supported by a National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIP) (No. 2019R1A2C1005023).

Compliance with Ethical Standards

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

References

  1. 1.
    Izhar, Khan F. U. (2018). Three degree of freedom acoustic energy harvester using improved helmholtz resonator. Int J Precis Eng Manuf, 19(1), 143–154.MathSciNetCrossRefGoogle Scholar
  2. 2.
    Park, H. (2017). Vibratory electromagnetic induction energy harvester on wheel surface of mobile sources. Int J Precis Eng Manuf Green Tech, 4(1), 59–66.CrossRefGoogle Scholar
  3. 3.
    Jang, S., & Oh, J. H. (2018). Rapid fabrication of microporous BaTiO3/PDMS nanocomposites for triboelectric nanogenerators through one-step microwave irradiation. Sci Rep, 8, 14287.CrossRefGoogle Scholar
  4. 4.
    Cao, L., Li, Z., Guo, C., Li, P., Meng, X., & Wang, T. (2019). Design and test of the MEMS coupled piezoelectric-electromagnetic energy harvester. Int J Precis Eng Manuf, 20(4), 673–686.CrossRefGoogle Scholar
  5. 5.
    Wang, Z. L. (2013). Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors. ACS Nano, 7(11), 9533–9557.CrossRefGoogle Scholar
  6. 6.
    Yang, Y., Zhu, G., Zhang, H., Chen, J., Zhong, X., Lin, Z.-H., et al. (2013). Triboelectric nanogenerator for harvesting wind energy and as self-powered wind vector sensor system. ACS Nano, 7(10), 9461–9468.CrossRefGoogle Scholar
  7. 7.
    Lee, J.-H., Ryu, H., Kim, T.-Y., Kwak, S.-S., Yoon, H.-J., Kim, T.-H., et al. (2015). Thermally induced strain-coupled highly stretchable and sensitive pyroelectric nanogenerators. Adv Energy Mater, 5, 1500704.CrossRefGoogle Scholar
  8. 8.
    Jang, S., Kim, H., & Oh, J. H. (2017). Simple and rapid fabrication of pencil-on-paper triboelectric nanogenerators with enhanced electrical performance. Nanoscale, 9, 13034–13041.CrossRefGoogle Scholar
  9. 9.
    Zhu, G., Lin, Z.-H., Jing, Q., Bai, P., Pan, C., Yang, Y., et al. (2013). Toward large-scale energy harvesting by a nanoparticle-enhanced triboelectric nanogenerator. Nano Lett, 13, 847–853.CrossRefGoogle Scholar
  10. 10.
    Fan, F.-R., Lin, L., Zhu, G., Wu, W. Z., Zhang, R., & Wang, Z. L. (2012). Transparent triboelectric nanogenerators and self-powered pressure sensors based on micropatterned plastic films. Nano Lett, 12, 3109–3114.CrossRefGoogle Scholar
  11. 11.
    Niu, S., Wang, S., Lin, L., Liu, Y., Zhou, Y. S., Hu, Y., et al. (2013). Theoretical study of contact-mode triboelectric nanogenerators as an effective power source. Energy Environ Sci, 6, 3576–3583.CrossRefGoogle Scholar
  12. 12.
    Wang, X., Yang, B., Liu, J., Zhu, Y., Yang, C., & He, Q. (2016). A flexible triboelectric-piezoelectric hybrid nanogenerator based on P(VDF-TrFE) nanofibers and PDMS/MWCNT for wearable devices. Sci Rep, 6, 36409.CrossRefGoogle Scholar
  13. 13.
    Jang, S., Kim, Y., & Oh, J. H. (2016). Influence of processing conditions and material properties on electrohydrodynamic direct patterning of a polymer solution. J Electron Mater, 45(4), 2291–2298.CrossRefGoogle Scholar
  14. 14.
    Cho, Y. S., Lee, J. S., Hong, M. W., Lee, S.-H., Kim, Y. Y., & Cho, Y.-S. (2018). Comparative assessment of the ability of dual-pore structure and hydroxyapatite to enhance the proliferation of osteoblast-like cells in well-interconnected scaffolds. Int J Precis Eng Manuf, 19(4), 605–612.CrossRefGoogle Scholar
  15. 15.
    Chen, F., Wu, Y., Ding, Z., Xia, X., Li, S., Zheng, H., et al. (2019). A novel triboelectric nanogenerator based on electrospun polyvinylidene fluoride nanofibers for effective acoustic energy harvesting and self-powered multifunctional sensing. Nano Energy, 56, 241–251.CrossRefGoogle Scholar
  16. 16.
    Garain, S., Jana, S., Sinha, T. K., & Mandal, D. (2016). Design of in situ Poled Ce3+-doped electrospun PVDF/graphene composite nanofibers for fabrication of nanopressure sensor and ultrasensitive acoustic nanogenerator. ACS Appl Mater Interfaces, 8, 4532–4540.CrossRefGoogle Scholar
  17. 17.
    Mi, H.-Y., Jing, X., Zheng, Q., Fang, L., Huang, H.-X., Turng, L.-S., et al. (2018). High-performance flexible triboelectric nanogenerator based on porous aerogels and electrospun nanofibers for energy harvesting and sensitive self-powered sensing. Nano Energy, 48, 327–336.CrossRefGoogle Scholar
  18. 18.
    Li, Z., Shen, J., Abdalla, I., Yu, J., & Ding, B. (2017). Nanofibrous membrane constructed wearable triboelectric nanogenerator for high performance biomechanical energy harvesting. Nano Energy, 36, 341–348.CrossRefGoogle Scholar
  19. 19.
    Zheng, Y., Cheng, L., Yuan, M., Wang, Z., Zhang, L., Qin, Y., et al. (2014). An electrospun nanowire-based triboelectric nanogenerator and its application in a fully self-powered UV detector. Nanoscale, 6, 7842–7846.CrossRefGoogle Scholar
  20. 20.
    Huang, T., Wang, C., Yu, H., Wang, H., Zhang, Q., & Zhu, M. (2015). Human walking-driven wearable all-fiber triboelectric nanogenerator containing electrospun polyvinylidene fluoride piezoelectric nanofibers. Nano Energy, 14, 226–235.CrossRefGoogle Scholar
  21. 21.
    Ye, B. U., Kim, B.-J., Ryu, J., Lee, J. Y., Baik, J. M., & Hong, K. (2015). Electrospun Ion gel nanofibers for flexible triboelectric nanogenerator: electrochemical effect on output power. Nanoscale, 7, 16189–16194.CrossRefGoogle Scholar
  22. 22.
    Jang, S., Kim, H., Kim, Y., Kang, B. J., & Oh, J. H. (2016). Honeycomb-like nanofiber based triboelectric nanogenerator using self-assembled electrospun poly(vinylidene fluoride-co-trifluoroethylene) nanofibers. Appl Phys Lett, 108, 143901.CrossRefGoogle Scholar
  23. 23.
    Lee, D., Chung, J., Yong, H., Lee, S., & Shin, D. (2019). A deformable foam-layered triboelectric tactile sensor with adjustable dynamic range. Int J Precis Eng Manuf Green Tech, 6(1), 43–51.CrossRefGoogle Scholar
  24. 24.
    Wang, H., Shi, M., Zhu, K., Su, Z., Cheng, X., Song, Y., et al. (2016). High performance triboelectric nanogenerators with aligned carbon nanotubes. Nanoscale, 8, 18489–18494.CrossRefGoogle Scholar
  25. 25.
    Chen, J., Guo, H., He, X., Liu, G., Xi, Y., Shi, H., et al. (2016). Enhancing performance of triboelectric nanogenerator by filling high dielectric nanoparticles into sponge PDMS film. ACS Appl Mater Interfaces, 8, 736–744.CrossRefGoogle Scholar
  26. 26.
    He, X., Guo, H., Yue, X., Gao, J., Xi, Y., & Hu, C. (2015). Improving energy conversion efficiency for triboelectric nanogenerator with capacitor structure by maximizing surface charge density. Nanoscale, 7, 1896–1903.CrossRefGoogle Scholar
  27. 27.
    Seung, W., Yoon, H.-J., Kim, T. Y., Ryu, H., Kim, J., Lee, J.-H., et al. (2017). Boosting power-generating performance of triboelectric nanogenerators via artificial control of ferroelectric polarization and dielectric properties. Adv Energy Mater, 7, 1600988.CrossRefGoogle Scholar
  28. 28.
    Kwon, Y. H., Shin, S.-H., Kim, Y.-H., Jung, J.-Y., Lee, M. H., & Nah, J. (2016). Triboelectric contact surface charge modulation and piezoelectric charge inducement using polarized composite thin film for performance enhancement of triboelectric generators. Nano Energy, 25, 225–231.CrossRefGoogle Scholar
  29. 29.
    Song, J., Xie, H., Wu, W., Joseph, V. R., Wu, C. F. J., & Wang, Z. L. (2010). Robust optimization of the output voltage of nanogenerators by statistical design of experiments. Nano Res, 3(9), 613–619.CrossRefGoogle Scholar
  30. 30.
    Karthikeyan, P., & Mahadevan, K. (2015). Investigation on the effects of sic particle addition in the weld zone during friction stir welding of Al 6351 alloy. Int J Adv Manuf Technol, 80, 1919–1926.CrossRefGoogle Scholar
  31. 31.
    Tosun, N., Cogun, C., & Tosun, G. (2004). A study on kerf and material removal rate in wire electrical discharge machining based on taguchi method. J Mater Process Technol, 152, 316–322.CrossRefGoogle Scholar
  32. 32.
    Wang, J., Wu, C., Dai, Y., Zhao, Z., Wang, A., Zhang, T., et al. (2017). Achieving ultrahigh triboelectric charge density for efficient energy harvesting. Nat Commun, 8(1), 88.CrossRefGoogle Scholar
  33. 33.
    Zheng, Q., Fang, L., Guo, H., Yang, K., Cai, Z., Meador, M. A. B., et al. (2018). Highly porous polymer aerogel film-based triboelectric nanogenerators. Adv Funct Mater, 28, 1706365.CrossRefGoogle Scholar
  34. 34.
    Baker, S. C., Atkin, N., Gunning, P. A., Granville, N., Wilson, K., Wilson, D., et al. (2006). Characterisation of electrospun polystyrene scaffolds for three-dimensional in vitro biological studies. Biomaterials, 27(16), 3136–3146.CrossRefGoogle Scholar
  35. 35.
    Yuan, X., Zhang, Y., Dong, C., & Sheng, J. (2004). Morphology of ultrafine polysulfone fibers prepared by electrospinning. Polym Int, 53(11), 1704–1710.CrossRefGoogle Scholar
  36. 36.
    Zhou, F.-L., Gong, R.-H., & Porat, I. (2010). Needle and needleless electrospinning for nanofibers. J Appl Polym Sci, 115, 2591–2598.CrossRefGoogle Scholar

Copyright information

© Korean Society for Precision Engineering 2019

Authors and Affiliations

  1. 1.LC Technology TeamSamsung Display Co., LTDAsan-SiKorea
  2. 2.Department of Mechanical EngineeringHanyang UniversityAnsanKorea
  3. 3.Commercial Vehicle Suspension and Steering Engineering Design TeamHyundai Motor GroupHwaseong-SiKorea

Personalised recommendations