Advertisement

A Study of Electromagnetic Vibration Energy Harvesters: Design Optimization and Experimental Validation

  • Seok-Chan Kim
  • Jin-Gyun Kim
  • Young-Cheol Kim
  • Seok-Jo Yang
  • Hanmin LeeEmail author
Regular Paper
  • 58 Downloads

Abstract

The aim of this study is to optimize the electromagnetic vibration energy harvesters with typical cylindrical shape considering the aspect ratio. In the optimization procedure, voltage and power, which are two key factors of energy harvesting systems, are mainly considered in the three types of electromagnetic vibration energy harvester according to various aspect ratios. We then investigate the optimum design parameters in each case. The results show that there is an optimum aspect ratio that maximizes the output voltage and power for the same volume. We also find that the optimum design parameters for each aspect ratio have a relatively constant value regardless of the aspect ratio. An experimental study is also conducted to verify the simulation results of the design optimization, and it clearly confirms that the proposed optimization result matches the experimental results well.

Keywords

Electromagnetic energy harvester Design optimization Aspect ratio Transduction factor 

Notes

Acknowledgements

This study is a research carried out with the support of the Korea Institute of Machinery and Materials in 2016.

References

  1. 1.
    Spreemann, D., & Manoli, Y. (2012). Electromagnetic vibration energy harvesting devices: Architectures, designs, modeling and optimization, advanced microelectronics (Vol. 35). New York: Springer.CrossRefGoogle Scholar
  2. 2.
    Beeby, S. P., Torah, R. N., Tudor, M. J., et al. (2007). A micro electromagnetic generator for vibration energy harvesting. Journal of Micromechanics and Microengineering, 17, 1257–1265.CrossRefGoogle Scholar
  3. 3.
    And, Williams C., & Yates, R. (1996). Analysis of a micro-electric generator for microsystems. Sensors and Actuators, A: Physical, 52, 8–11.CrossRefGoogle Scholar
  4. 4.
    Arnold, D. P. (2007). Review of microscale magnetic power generation. IEEE Transactions on Magnetics, 43(11), 3940–3951.CrossRefGoogle Scholar
  5. 5.
    Kim, J. E., Kim, H. J., Yoon, H. S., & Kim, Y. Y. (2015). An energy conversion model for cantilevered piezoelectric vibration energy harvesters using only measurable parameters. International Journal of Precision Engineering and Manufacturing-Green Technology, 2(1), 51–57.CrossRefGoogle Scholar
  6. 6.
    Jin, J. W., Kim, J. H., & Kang, K. W. (2015). Development of durability test procedure of vibration based energy harvester in railway vehicle. International Journal of Precision Engineering and Manufacturing-Green Technology, 2(4), 353–358.CrossRefGoogle Scholar
  7. 7.
    Park, H. C., & Kim, J. H. (2016). Electromagnetic induction energy harvester for high speed railroad applications. International Journal of Precision Engineering and Manufacturing-Green Technology, 3(1), 41–48.CrossRefGoogle Scholar
  8. 8.
    Park, H. C. (2017). Vibration electromagnetic induction energy harvester on wheel surface of mobile sources. International Journal of Precision Engineering and Manufacturing-Green Technology, 4(1), 59–66.CrossRefGoogle Scholar
  9. 9.
    Kim, J. H., Shin, Y. J., Chun, Y. D., & Kim, J. H. (2018). Design of 100 W regenerative vehicle suspension to harvest energy from road surfaces. International Journal of Precision Engineering and Manufacturing-Green Technology, 19(7), 1089–1096.CrossRefGoogle Scholar
  10. 10.
    Spreemann, D., Hoffmann, D., Folkmer, B., & Manoli, Y. (2008). Numerical optimization approach for resonant electromagnetic vibration transducer designed for random vibration. Journal of Micromechanics and Microengineering, 18(10), 104001.CrossRefGoogle Scholar
  11. 11.
    Spreemann, D., Folkmer, B., & Manoli, Y. (2008). Comparative study of electromagnetic coupling architectures for vibration energy harvesting devices. Proceedings of the Power MEMS, 2008, 257–260.Google Scholar
  12. 12.
    Cepnik, C., & Wallrabe, U. (2010). Practical and theoretical limits of the output power of electromagnetic energy harvesters at miniaturization. Proceedings of the Power MEMS, 2010, 69–72.Google Scholar
  13. 13.
    Cepnik, C., Yeatman, E. M., & Wallrabe, U. (2012). Effects of nonconstant coupling through nonlinear magnetics in electromagnetic vibration energy harvesters. Journal of Intelligent Material Systems and Structures, 23, 1533–1541.CrossRefGoogle Scholar
  14. 14.
    Kim, S. C., Kim, Y. C., Seo, J. H., & Lee, H. M. (2017). Design optimization of electromagnetic vibration energy harvesters considering aspect ratio. The Korean Society for Noise and Vibration Engineering, 27(3), 360–371.CrossRefGoogle Scholar
  15. 15.
    Stephen, N. G. (2005). On energy harvesting from ambient vibration. Journal of Sound and Vibration, 293(1–2), 409–425.Google Scholar
  16. 16.
    Cepnik, C., Radler, O., Rosenbaum, S., et al. (2011). Effective optimization of electromagnetic energy harvesters through direct computation of the electromagnetic coupling. Sensors and Actuators, A: Physical, 167(2), 416–421.CrossRefGoogle Scholar
  17. 17.
    Lee, H. M., Kim, Y. C., Lim, J. W., et al. (2014). Design optimization process for electromagnetic vibration energy harvesters using finite element analysis. Transactions of the Korean Society for Noise and Vibration Engineering, 24(10), 809–816.CrossRefGoogle Scholar
  18. 18.
    Owen, A. (1992). Orthogonal arrays for computer experiments, integration, and visualization. Statistica Sinica, 2(2), 439–452.MathSciNetzbMATHGoogle Scholar
  19. 19.
    IEC 60317. (2013). Specifications for particular types of winding wires.Google Scholar

Copyright information

© Korean Society for Precision Engineering 2019

Authors and Affiliations

  • Seok-Chan Kim
    • 1
  • Jin-Gyun Kim
    • 2
  • Young-Cheol Kim
    • 3
  • Seok-Jo Yang
    • 1
  • Hanmin Lee
    • 3
    Email author
  1. 1.Department of Mechatronics EngineeringChungnam National UniversityDaejeonRepublic of Korea
  2. 2.Department of Mechanical EngineeringKyung Hee UniversityYongin-siRepublic of Korea
  3. 3.Department of Smart Industrial Machine TechnologiesKorea Institute of Machinery and MaterialsDaejeonRepublic of Korea

Personalised recommendations