Advertisement

Stretchable Power-Generating Sensor Array in Textile Structure Using Piezoelectric Functional Threads with Hemispherical Dome Structures

  • Kihong Kim
  • Kwang-Seok YunEmail author
Regular Paper
  • 91 Downloads

Abstract

This paper presents a power-generating sensor array in a flexible and stretchable form. The proposed device is composed of a woven structure that provides various features, including a capacitive tactile sensor, piezoresistive strain sensor, triboelectric energy harvester, and piezoelectric energy harvester. The device is implemented in a textile structure using functional threads implemented with lead zirconate, carbon nanotube, polydimethylsiloxane, and silver nanowire (Ag NW). A stretching force can be detected by measuring the resistance change in the Ag NW composite layer on each thread. Further, the magnitude and location of the vertical force can be detected by measuring the capacitance variation on each capacitive cell that is formed by the gap between two Ag NW layers at the crossing points of each weft and warp thread. For the energy harvesters, the maximum power was measured as 108 μW at 3 MΩ from the triboelectric energy harvesting when the device was pushed in the vertical direction. When a stretching force was applied, a maximum of 60.3 μW at 1 MΩ was measured from the piezoelectric energy harvester.

Keywords

Piezoelectric Strain sensor Tactile sensor Triboelectric Woven structure 

Notes

Acknowledgements

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT (2019R1A2B5B01070298) and the MSIT (Ministry of Science and ICT), Korea, under the ITRC (Information Technology Research Center) support program (IITP-2018-0-01421) supervised by the IITP (Institute for Information & communications Technology Promotion).

Compliance with Ethical Standards

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

References

  1. 1.
    White, E. L., Yuen, M. C., Case, J. C., & Kramer, R. K. (2017). Low-cost, facile, and scalable manufacturing of capacitive sensors for soft systems. Advanced Materials Technologies, 2(9), 1700072.CrossRefGoogle Scholar
  2. 2.
    Roh, E., Hwang, B. U., Kim, D., Kim, B. Y., & Lee, N. E. (2015). Stretchable, transparent, ultrasensitive, and patchable strain sensor for human–machine interfaces comprising a nanohybrid of carbon nanotubes and conductive elastomers. ACS Nano, 9(6), 6252–6261.CrossRefGoogle Scholar
  3. 3.
    Ahmed, A., Zhang, S. L., Hassan, I., Saadatnia, Z., Zi, Y., Zu, J., et al. (2017). A washable, stretchable, and self-powered human-machine interfacing Triboelectric nanogenerator for wireless communications and soft robotics pressure sensor arrays. Extreme Mechanics Letters, 13, 25–35.CrossRefGoogle Scholar
  4. 4.
    Won, J., Park, H. W., Park, Y. B., & Kim, N. (2017). Potentials of additive manufacturing with smart materials for chemical biomarkers in wearable applications. International Journal of Precision Engineering and Manufacturing-Green Technology, 4(3), 335–347.CrossRefGoogle Scholar
  5. 5.
    Syduzzaman, M., Patwary, S. U., Farhana, K., & Ahmed, S. (2015). Smart textiles and nano-technology: A general overview. Journal of Textile Science and Engineering, 5, 1000181.CrossRefGoogle Scholar
  6. 6.
    Özdemir, H., & Kılınç, S. (2015). Smart woven fabrics with portable and wearable vibrating electronics. Autex Research Journal, 5(2), 99–103.CrossRefGoogle Scholar
  7. 7.
    Gong, S., Schwalb, W., Wang, Y., Chen, Y., Tang, Y., Si, J., et al. (2014). A wearable and highly sensitive pressure sensor with ultrathin gold nanowires. Nature communications, 5, 3132.CrossRefGoogle Scholar
  8. 8.
    Yamada, T., Hayamizu, Y., Yamamoto, Y., Yomogida, Y., Izadi-Najafabadi, A., Futaba, D. N., et al. (2011). A stretchable carbon nanotube strain sensor for human-motion detection. Nature Nanotechnology, 6(5), 296.CrossRefGoogle Scholar
  9. 9.
    Findlow, A., Goulermas, J. Y., Nester, C., Howard, D., & Kenney, L. P. J. (2008). Predicting lower limb joint kinematics using wearable motion sensors. Gait & Posture, 28(1), 120–126.CrossRefGoogle Scholar
  10. 10.
    Arshak, K., Morris, D., Korostynska, O., Jafer, E., Arshak, A., Harris, J., et al. (2004). Novel silicone-based capacitive pressure sensors with high sensitivity for biomedical applications. e-polymers, 4(1), 61.CrossRefGoogle Scholar
  11. 11.
    Takashima, K., Horie, S., Mukai, T., Ishida, K., & Matsushige, K. (2008). Piezoelectric properties of vinylidene fluoride oligomer for use in medical tactile sensor applications. Sensors and Actuators, A: Physical, 144(1), 90–96.CrossRefGoogle Scholar
  12. 12.
    Rahimi, R., Ochoa, M., Yu, W., & Ziaie, B. (2015). Highly stretchable and sensitive unidirectional strain sensor via laser carbonization. ACS Applied Materials & Interfaces, 7(8), 4463–4470.CrossRefGoogle Scholar
  13. 13.
    Wang, X., Meng, S., Tebyetekerwa, M., Li, Y., Pionteck, J., Sun, B., et al. (2018). Highly sensitive and stretchable piezoresistive strain sensor based on conductive poly (styrene-butadiene-styrene)/few layer graphene composite fiber. Composites Part A: Applied Science and Manufacturing, 105, 291–299.CrossRefGoogle Scholar
  14. 14.
    Amjdi, M., Pichitpajongkit, A., Lee, S., Ryu, S., & Park, I. (2014). Highly stretchable and sensitive strain sensor based on silver nanowire–elastomer nanocomposite. ACS Nano, 8(5), 5154–5163.CrossRefGoogle Scholar
  15. 15.
    Roh, H. D., Lee, H., & Park, Y. B. (2016). Structural health monitoring of carbon-material-reinforced polymers using electrical resistance measurement. International Journal of Precision Engineering and Manufacturing-Green Technology, 3(3), 311–321.CrossRefGoogle Scholar
  16. 16.
    Lee, H. K., Chung, J., Chang, S. I., & Yoon, E. (2008). Normal and shear force measurement using a flexible polymer tactile sensor with embedded multiple capacitors. Journal of Microelectromech-anical Systems, 17(4), 934–942.CrossRefGoogle Scholar
  17. 17.
    Muhammad, H. B., Recchiuto, C., Oddo, C. M., Beccai, L., Anthony, C. J., Adams, M. J., et al. (2011). A capacitive tactile sensor array for surface texture discrimination. Microelectronic Engineering, 88(8), 1811–1813.CrossRefGoogle Scholar
  18. 18.
    Pyo, D., Lim, J. M., Mun, S., & Yun, S. (2018). Silver-nanowires coated pitch-tuned coiled polymer actuator for large contractile strain under light-loading. International Journal of Precision Engineering and Manufacturing, 19(12), 1895–1900.CrossRefGoogle Scholar
  19. 19.
    Montanini, R., Squadrito, G., & Giacoppo, G. (2011). Measurement of the clamping pressure distribution in polymer electrolyte fuel cells using piezoresistive sensor arrays and digital image correlation techniques. Journal of Power Sources, 196(20), 8484–8493.CrossRefGoogle Scholar
  20. 20.
    Cole, M., Gardner, J. W., Lim, A. W. Y., Scivier, P. K., & Brignell, J. E. (1999). Polymeric resistive bridge gas sensor array driven by a standard cell CMOS current drive chip. Sensors and Actuators B: Chemical, 58(1–3), 518–525.CrossRefGoogle Scholar
  21. 21.
    Vatani, M., Lu, Y., Engeberg, E. D., & Choi, J. W. (2015). Combined 3D printing technologies and material for fabrication of tactile sensors. International Journal of Precision Engineering and Manufacturing, 16(7), 1375–1383.CrossRefGoogle Scholar
  22. 22.
    Kim, Y. T., Kim, J. H., Kim, D. K., & Kwon, Y. H. (2015). Force sensing model of capacitive hybrid touch sensor using thin-film force sensor and its evaluation. International Journal of Precision Engineering and Manufacturing, 16(5), 981–988.CrossRefGoogle Scholar
  23. 23.
    Lee, J., Kwon, H., Seo, J., Shin, S., Koo, J. H., Pang, C., et al. (2015). Conductive fiber-based ultrasensitive textile pressure sensor for wearable electronics. Advanced Materials, 27(15), 2433–2439.CrossRefGoogle Scholar
  24. 24.
    Hasegawa, Y., Shikida, M., Ogura, D., Suzuki, Y., & Sato, K. (2008). Fabrication of a wearable fabric tactile sensor produced by artificial hollow fiber. Journal of Micromechanics and Microengineering, 18(8), 085014.CrossRefGoogle Scholar
  25. 25.
    Park, J. & Yun, K.-S. (2016). Hybrid energy harvester based on piezoelectric and triboelectric effects. In 2016 IEEE 29th International Conference on Micro Electro Mechanical Systems (MEMS), pp. 41–42.Google Scholar
  26. 26.
    Song, S., & Yun, K.-S. (2015). Design and characterization of scalable woven piezoelectric energy harvester for wearable applications. Smart Materials and Structures, 24(4), 045008.CrossRefGoogle Scholar
  27. 27.
    Yun, D., Park, J., & Yun, K.-S. (2015). Highly stretchable energy harvester using piezoelectric helical structure for wearable applications. Electronics Letters, 51, 284–285.CrossRefGoogle Scholar
  28. 28.
    Kim, M., & Yun, K.-S. (2017). Helical piezoelectric energy harvester and its application to energy harvesting garments. Micromachines, 8(4), 115.CrossRefGoogle Scholar
  29. 29.
    Lee, D., Chung, J., Yong, H., Lee, S., & Shin, D. (2019). A deformable foam-layered triboelectric tactile sensor with adjustable dynamic range. International Journal of Precision Engineering and Manufacturing-Green Technology, 6(1), 43–51.CrossRefGoogle Scholar
  30. 30.
    Cui, J., Yoon, H., & Youn, B. D. (2018). An omnidirectional biomechanical energy harvesting (OBEH) sidewalk block for a self-generative power grid in a smart city. International Journal of Precision Engineering and Manufacturing-Green Technology, 5(4), 1–7.CrossRefGoogle Scholar
  31. 31.
    Park, J. H., Lim, T. W., Kim, S. D., & Park, S. H. (2016). Design and experimental verification of flexible plate-type piezoelectric vibrator for energy harvesting system. International Journal of Precision Engineering and Manufacturing-Green Technology, 3(3), 253–259.CrossRefGoogle Scholar
  32. 32.
    Usharani, R., Uma, G., & Umapathy, M. (2016). Design of high output broadband piezoelectric energy harvester with double tapered cavity beam. International Journal of Precision Engineering and Manufacturing-Green Technology, 3(4), 343–351.CrossRefGoogle Scholar
  33. 33.
    Liu, L., Pan, J., Chen, P., Zhang, J., Yu, X., Ding, X., et al. (2016). A triboelectric textile templated by a three-dimensionally penetrated fabric. Journal of Materials Chemistry A, 4(16), 6077–6083.CrossRefGoogle Scholar
  34. 34.
    Seung, W., Gupta, M. K., Lee, K. Y., Shin, K. S., Lee, J. H., Kim, T. Y., et al. (2015). Nanopatterned textile-based wearable triboelectric nanogenerator. ACS Nano, 9(4), 3501–3509.CrossRefGoogle Scholar
  35. 35.
    Pu, X., Li, L., Song, H., Du, C., Zhao, Z., Jiang, C., et al. (2015). A self-charging power unit by integration of a textile triboelectric nanogenerator and a flexible lithium-ion battery for wearable electronics. Advanced Materials, 27(15), 2472–2478.CrossRefGoogle Scholar
  36. 36.
    Ren, X., Fan, H., Zhao, Y., & Liu, Z. (2016). Flexible lead-free BiFeO3/PDMS-based nanogenerator as piezoelectric energy harvester. ACS Applied Materials & Interfaces, 8(39), 26190–26197.CrossRefGoogle Scholar
  37. 37.
    Jeong, C. K., Park, K. I., Ryu, J., Hwang, G. T., & Lee, K. J. (2014). Large-area and flexible lead-free nanocomposite generator using alkaline niobate particles and metal nanorod filler. Advanced Functional Materials, 24(18), 2620–2629.CrossRefGoogle Scholar
  38. 38.
    Ahn, Y., Song, S., & Yun, K.-S. (2015). Woven flexible textile structure for wearable power-generating tactile sensor array. Smart Materials and Structures, 24(7), 075002.CrossRefGoogle Scholar
  39. 39.
    Yang, Y., Zhang, H., Lin, Z. H., Zhou, Y. S., Jing, Q., Su, Y., et al. (2013). Human skin based triboelectric nanogenerators for harvesting biomechanical energy and as self-powered active tactile sensor system. ACS Nano, 7(10), 9213–9222.CrossRefGoogle Scholar
  40. 40.
    Wang, Y., Wang, Y., & Yang, Y. (2018). Graphene–polymer nanocomposite-based redox-induced electricity for flexible self-powered strain sensors. Advanced Energy Materials, 8(22), 1800961.CrossRefGoogle Scholar
  41. 41.
    Kim, K., Song, G., Park, C., & Yun, K.-S. (2017). Multifunctional woven structure operating as triboelectric energy harvester, capacitive tactile sensor array, and piezoresistive strain sensor array. Sensors, 17(11), 2582.CrossRefGoogle Scholar
  42. 42.
    Lee, J. H., Hinchet, R., Kim, S. K., Kim, S., & Kim, S. W. (2015). Shape memory polymer-based self-healing triboelectric nanogenerator. Energy & Environmental Science, 8(12), 3605–3613.CrossRefGoogle Scholar
  43. 43.
    Huang, T., Zhang, J., Yu, B., Yu, H., Long, H., Wang, H., et al. (2019). Fabric texture design for boosting the performance of a knitted washable textile triboelectric nanogenerator as wearable power. Nano Energy, 58, 375–383.CrossRefGoogle Scholar
  44. 44.
    Zhao, Z., Yan, C., Liu, Z., Fu, X., Peng, L. M., Hu, Y., et al. (2016). Machine-washable textile triboelectric nanogenerators for effective human respiratory monitoring through loom weaving of metallic yarns. Advanced Materials, 28(46), 10267–10274.CrossRefGoogle Scholar
  45. 45.
    Soin, N., Shah, T. H., Anand, S. C., Geng, J., Pornwannachai, W., Mandal, P., et al. (2014). Novel “3-D spacer” all fibre piezoelectric textiles for energy harvesting applications. Energy & Environmental Science, 7(5), 1670–1679.CrossRefGoogle Scholar
  46. 46.
    Zhang, M., Gao, T., Wang, J., Liao, J., Qiu, Y., Yang, Q., et al. (2015). A hybrid fibers based wearable fabric piezoelectric nanogenerator for energy harvesting application. Nano Energy, 13, 298–305.CrossRefGoogle Scholar
  47. 47.
    Bruno, F. (2014). Design and implementation of a new low-power consumption DSRC transponder, Ph.D. dissertation, Universite Grenoble.Google Scholar

Copyright information

© Korean Society for Precision Engineering 2019

Authors and Affiliations

  1. 1.Department of Electronic EngineeringSogang UniversitySeoulRepublic of Korea

Personalised recommendations