Design of a telescopic tower for wind energy production with reduced environmental impact

  • Antonio PantanoEmail author
  • Tullio Tucciarelli
  • Nicola Montinaro
  • Antonio Mancino
Regular Paper


A prototype of a telescopic pole for wind energy production with low environmental impact and its lifting system for a 60–250 kW turbine and a height of 30 m have been designed and manufactured. A telescopic tower, which is raised and lowered by automation or by remote control, allows to differentiate the presence of the generator within the landscape over time. The technology currently available for lifting and lowering wind turbines is made up of telescopic poles of heights of less than 10 meters and with tilting posts of height below 30 m. Without a state of the art to refer to, the telescopic pole and its lifting system have been designed starting from scratch and solving with innovative ideas the various criticalities that have arisen. The design of the telescopic coupling, the design for maintaining the preload and for the rotational decoupling, the optimization the design of the pairs of sleeves by numerical simulations, the design of the pegs and the bushes of the jack-up lifting system have been presented. The prototype was installed in Caltanissetta, Italy, and successfully tested.


Telescopic tower Wind turbine tower Mechanical design Finite element method 



Renewable energy devices


Blades length


Blades width


Tower height


Finite element method


Compliance with ethical standards

Conflict of interest

The authors declare that there is no conflict of interest.

Supplementary material

Supplementary material 1 (MP4 37997 kb)


  1. 1.
    Bhandari, B., Ahn, S. H., & Ahn, T. B. (2016). Optimization of hybrid renewable energy power system for remote installations: Case studies for mountain and island. International Journal of Precision Engineering and Manufacturing, 17(6), 815–822.CrossRefGoogle Scholar
  2. 2.
    Abu-Hamdeh, N. H., & Almitani, K. H. (2017). Construction and numerical analysis of a collapsible vertical axis wind turbine. Energy Conversion and Management, 151, 400–413.CrossRefGoogle Scholar
  3. 3.
    Staudt, L. (2010). Design and development of small wind turbines. In Chapter of the book “WIT Transactions on State of the Art in Science and Engineering” (Vol. 44). Southampton: WIT Press.
  4. 4.
    Gwon, T. (2011). Structural analyses of wind turbine tower for 3 kW horizontal-axis wind turbine. Thesis. San Luis Obispo: California Polytechnic State University, August 9.Google Scholar
  5. 5.
    Ganser, H., Mamayek, S., Samaroo, M., & Wolkiewicz, D. (2014). Design framework for comparing wind turbine erection methods. Thesis, Worcester Polytechnic Institute, April 10.Google Scholar
  6. 6.
    “Small Wind Guidebook”, Web page, WINDExchange. (2018). Accessed 29 Dec 2018.
  7. 7.
    “Gaia-Wind Cook up Self Raising Tower”, Web page, FarmingUK, 14 August. (2013). Accessed 29 Dec 2018.
  8. 8.
    “PMM telescopic masts with pressurized air elevation 9 m/10 m”, Online Brochure, (2018). Accessed 29 Dec 2018.
  9. 9.
    “Telescopic mast and tower elevation solutions”, Online Brochure, Will-Burt Company. (2018). Accessed 29 Dec 2018.
  10. 10.
    Sundin, E. “Telescopic Mast”, US Patent 4580377.Google Scholar
  11. 11.
    Brannan, P., & Spraggon, M. “Telescopic Mast”, UK Patent 2497921.Google Scholar
  12. 12.
    Creaser Jr., C.W., Hollis N.H., “Telescoping Lightweight Antenna Tower Assembly and the Like”. US Patent US5101215A.Google Scholar
  13. 13.
    Gremillion, E.J. “Extendable antenna mast with independent retracting and lifting cables”. US Patent 4785309.Google Scholar
  14. 14.
    “ITS Telescopic Tower Systems”. (2018). Online Brochure, Integrated Tower Systems Inc. Accessed 29 Dec 2018.
  15. 15.
    Van Treuren, K.W. (2016). “Small horizontal axis wind turbines: Current status and future challenges”. In Proceedings of the ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition (Vol. 9), Seoul, South Korea, June 13–17.Google Scholar
  16. 16.
    Bang, H. J., Kim, H. I., & Lee, K. S. (2012). Measurement of strain and bending deflection of a wind turbine tower using arrayed FBG sensors. International Journal of Precision Engineering and Manufacturing, 13(12), 2121–2126.CrossRefGoogle Scholar
  17. 17.
    Bhandari, B., Poudel, S. R., Lee, K. T., & Ahn, S. H. (2014). Mathematical modeling of hybrid renewable energy system: A review on small hydro-solar-wind power generation. International Journal of Precision Engineering and Manufacturing, 1(2), 157–173.CrossRefGoogle Scholar
  18. 18.
    Lee, K. S., & Bang, H. J. (2012). A study on the prediction of lateral buckling load for wind turbine tower structures. International Journal of Precision Engineering and Manufacturing, 13(10), 1829–1836.CrossRefGoogle Scholar
  19. 19.
    Oh, Y., Kim, K., Kim, H., & Paek, I. (2015). Control algorithm of a floating wind turbine for reduction of tower loads and power fluctuation. International Journal of Precision Engineering and Manufacturing, 16(9), 2041–2048.CrossRefGoogle Scholar
  20. 20.
    Baek, J.-H., Kim, C.-W., Kim, Y.-C., Park, H.-C., Shi, W., & Shin, H.-K. (2012). Study on the marine growth effect on the dynamic response of offshore wind turbines. International Journal of Precision Engineering and Manufacturing, 13(7), 1167–1176.CrossRefGoogle Scholar
  21. 21.
    Shi, W., Park, H. C., Chung, C. W., Shin, H. K., Kim, S. H., Lee, S. S., et al. (2015). Soil-structure interaction on the response of jacket-type offshore wind turbine. International Journal of Precision Engineering and Manufacturing, 2(2), 139–148.CrossRefGoogle Scholar
  22. 22.
    Wang, Q., Zhou, H., & Wan, D. (2012). Numerical simulation of wind turbine blade-tower interaction. Journal of Marine Science and Application, 11(3), 321–327.CrossRefGoogle Scholar
  23. 23.
    Wang, X., Chen, T., Zhao, Q., Yuan, G., & Liu, J. (2016). Fatigue evaluation of grouted connections under bending moment in offshore wind turbines based on ABAQUS scripting interface. The International Journal of Steel Structures, 16(4), 1149–1159.CrossRefGoogle Scholar
  24. 24.
    Ryzhenkov, M. A., Ermolenko, B. V., & Ermolenko, G. V. (2011). Environmental problems of wind power engineering. Thermal Engineering, 58(11), 962–969.CrossRefGoogle Scholar
  25. 25.
    Axisa, R., Muscat, M., Sant, T., & Farrugia, R. N. (2017). Structural assessment of a lattice tower for a small, multi-bladed wind turbine. The International Journal of Energy and Environmental Engineering, 8(4), 343–358.CrossRefGoogle Scholar
  26. 26.
    Uys, P. E., Farkas, J., J´armai, K., & van Tonder, F. (2007). Optimisation of a steel tower for a wind turbine structure. Engineering Structures, 29, 1337–1342.CrossRefGoogle Scholar
  27. 27.
    Lagaros, N. D., & Karlaftis, M. G. (2016). Life-cycle cost structural design optimization of steel wind towers. Computers and Structures, 174, 122–132.CrossRefGoogle Scholar
  28. 28.
    Dimopoulos, C. A., & Gantes, C. J. (2013). Comparison of stiffening types of the cutout in tubular wind turbine towers. Journal of Constructional Steel Research, 83, 62–74.CrossRefGoogle Scholar
  29. 29.
    Darrow, J., Johnson, K., & Wright, A. (2011). Design of a tower and drive train damping controller for the three-bladed controls advanced research turbine operating in design-driving load cases. Wind Energy, 14, 571–601.CrossRefGoogle Scholar
  30. 30.
    Ning, Andrew, & Petch, Derek. (2016). Integrated design of downwind land-based wind turbines using analytic gradients. Wind Energy, 19, 2137–2152.CrossRefGoogle Scholar
  31. 31.
    Soman, Rohan N., Malinowski, Pawel H., & Ostachowicz, Wieslaw M. (2016). Bi-axial neutral axis tracking for damage detection in wind-turbine towers. Wind Energy, 19, 639–650.CrossRefGoogle Scholar
  32. 32.
    Kenna, A., & Basu, B. (2015). A finite element model for pre-stressed or post-tensioned concrete wind turbine towers. Wind Energy, 18, 1593–1610.CrossRefGoogle Scholar
  33. 33.
    Liu, W. (2016). Design and kinetic analysis of wind turbine blade-hub-tower coupled system. Renewable Energy, 94, 547–557.CrossRefGoogle Scholar
  34. 34.
    Rebelo, C., Moura, A., Gervásio, H., Veljkovic, M., & Simões da Silva, L. (2014). Comparative life cycle assessment of tubular wind towers and foundations—Part 1: Structural design. Engineering Structures, 74, 283–291.CrossRefGoogle Scholar
  35. 35.
    Hu, Y., Baniotopoulos, C., & Yang, J. (2014). Effect of internal stiffening rings and wall thickness on the structural response of steel wind turbine towers. Engineering Structures, 81, 148–161.CrossRefGoogle Scholar
  36. 36.
    Chen, K., Song, M. X., & Zhang, X. (2013). The investigation of tower height matching optimization for wind turbine positioning in the wind farm. Journal of Wind Engineering and Industrial Aerodynamics, 114, 83–95.CrossRefGoogle Scholar
  37. 37.
    Sarkar, A., & Gudmestad, O. T. (2013). Study on a new method for installing a monopile and a fully integrated offshore wind turbine structure. Marine Structures, 33, 160–187.CrossRefGoogle Scholar
  38. 38.
    Brodersen, M. L., & Høgsber, J. (2014). Damping of offshore wind turbine tower vibrations by a stroke amplifying brace. Energy Procedia, 53, 258–267.CrossRefGoogle Scholar
  39. 39.
    Perelmuter, A., & Yurchenko, V. (2013). Parametric optimization of steel shell towers of high-power wind turbines. Procedia Engineering, 57, 895–905.CrossRefGoogle Scholar
  40. 40.
    Fujiyama, C., Yonetsu, K., Maeshima, T., & Koda, Y. (2014). Identifiable stress state of wind turbine tower-foundation system based on field measurement and FE analysis. Procedia Engineering, 95, 279–289.CrossRefGoogle Scholar
  41. 41.
    Sintra, H., Mendes, V. M. F., & Melício, R. (2014). Modeling and simulation of wind shear and tower shadow on wind turbines. Procedia Technology, 17, 471–477.CrossRefGoogle Scholar
  42. 42.
    van der Zee, T., Jan de Ruiter, M., & Wieling, I. (2017). The C-Tower project—A composite tower for offshore wind turbines. Energy Procedia, 137, 401–405.CrossRefGoogle Scholar
  43. 43.
    Fitzgerald, B., Sarkar, S., & Staino, A. (2018). Improved reliability of wind turbine towers with active tuned mass dampers (ATMDs). Journal of Sound and Vibration, 419, 103–122.CrossRefGoogle Scholar
  44. 44.
    Zhang, R., Zhao, Z., & Dai, K. (2019). Seismic response mitigation of a wind turbine tower using a tuned parallel inerter mass system. Engineering Structures, 180, 29–39.CrossRefGoogle Scholar
  45. 45.
    Nezamolmolki, D., & Shooshtari, A. (2016). Investigation of nonlinear dynamic behavior of lattice structure wind turbines. Renewable Energy, 97, 33–46.CrossRefGoogle Scholar
  46. 46.
    Cheng, Y., Xue, Z., Jiang, T., Wang, W., & Wang, Y. (2018). Numerical simulation on dynamic response of flexible multi-body tower blade coupling in large wind turbine. Energy, 152, 601–612.CrossRefGoogle Scholar
  47. 47.
    Kang, W., Zhang, C., & Yu, J. (2016). Stochastic extreme motion analysis of jack-up responses during wet towing. Ocean Engineering, 111, 56–66.CrossRefGoogle Scholar
  48. 48.
    Cao, Y., Nie, W., Hu, X., Zhang, S., Meng, Z., Xin, L., et al. (2016). Parameter sensitivity study of dynamic response for jack-ups by FEM analysis. Ocean Engineering, 124, 125–134.CrossRefGoogle Scholar
  49. 49.
    Technical Specifications. (2012). Wind turbine Libellula 55 kW, ARIA S.r.l., Viale Vittorio Veneto 60, 59100 Prato, Italy, rev.4 del 23/10/2012.Google Scholar

Copyright information

© Korean Society for Precision Engineering 2019

Authors and Affiliations

  1. 1.Dipartimento di IngegneriaUniversità degli Studi di PalermoPalermoItaly

Personalised recommendations