Fast Compositional Mapping of Solar Cell by Laser Spectroscopy Technique for Process Monitoring

  • Seok-Hee Lee
  • Jang-Hee Choi
  • Jung-Hwan In
  • Sungho JeongEmail author
Regular Paper


The applicability of laser-induced breakdown spectroscopy (LIBS) for elemental mapping in atmospheric condition is demonstrated using a commercial Cu(In,Ga)Se2 solar cells module. The LIBS analysis was carried out using a Q-switched Nd:YAG laser (λ = 532 nm, τ = 5 ns, top-hat profile) and a CCD spectrometer. At the laser fluence of 22 J/cm2 with He as the buffer gas, a spatial resolution of 130 μm was achieved and the LIBS mapping of a 2.58 × 2.58 mm2 area was completed in 24 min. It is demonstrated that the detailed variation of elemental concentrations across the scribing pattern and over the buried pattern could be measured with LIBS. The comparison of measured LIBS profiles with those from secondary ion mass spectrometry agreed closely.


LIBS Mapping CIGS Solar cells 



This study was supported by the R&D Center for Valuable Recycling (Global-Top R&BD Program) of the Ministry of Environment (Project No. 2016002250003).

Compliance with ethical standards

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.


  1. 1.
    Bauer, G. H., Gütay, L., & Kniese, R. (2005). Structural properties and quality of the photoexcited state in CuIn1−xGaxSe2 solar cell absorbers with lateral submicron resolution. Thin Solid Films, 480–481, 259–263.CrossRefGoogle Scholar
  2. 2.
    Theodoropoulou, S., Papadimitriou, D., Anestou, K., Cobet, C., & Esser, N. (2009). Optical properties of CuIn1−xGaxSe 2 quaternary alloys for solar-energy conversion. Semiconductor Science and Technology, 24(1), 015014.CrossRefGoogle Scholar
  3. 3.
    Ishizuka, S., Yamada, A., Matsubara, K., Fons, P., Sakurai, K., & Niki, S. (2008). Alkali incorporation control in Cu(In, Ga)Se2 thin films using silicate thin layers and applications in enhancing flexible solar cell efficiency. Applied Physics Letters, 93(12), 124105.CrossRefGoogle Scholar
  4. 4.
    Werner, J. H., Mattheis, J., & Rau, U. (2005). Efficiency limitations of polycrystalline thin film solar cells: case of Cu(In, Ga)Se2. Thin Solid Films, 480–481, 399–409.CrossRefGoogle Scholar
  5. 5.
    Zaunbrecher K.N., Johnston S.W., & Sites J.R. (2012). Identification and analysis of distinct features in imaging thin-film solar cells. In 2012 38th IEEE photovoltaic specialists conference (pp. 001716–001720).Google Scholar
  6. 6.
    Cerrato, R., Casal, A., Mateo, M. P., & Nicolas, G. (2017). Dealloying evidence on corroded brass by laser-induced breakdown spectroscopy mapping and depth profiling measurements. Spectrochimica Acta Part B: Atomic Spectroscopy, 130, 1–6.CrossRefGoogle Scholar
  7. 7.
    Klus, J., et al. (2016). Multivariate approach to the chemical mapping of uranium in sandstone-hosted uranium ores analyzed using double pulse Laser-Induced Breakdown Spectroscopy. Spectrochimica Acta Part B: Atomic Spectroscopy, 123, 143–149.CrossRefGoogle Scholar
  8. 8.
    Lee, S.-H., Kim, C.-K., Shim, H.-S., Yoo, J.-H., Russo, R. E., & Jeong, S. (2014). Ablation and spectroscopic characteristics of thin CuIn1-xGaxSe2 solar cell films fabricated by co-evaporation and co-sputtering processes. International Journal of Precision Engineering and Manufacturing-Green Technology, 1(1), 17–24.CrossRefGoogle Scholar
  9. 9.
    Choi, J.-H., Moon, Y., Lee, S.-H., In, J.-H., & Jeong, S. (2016). Wavelength dependence of the ablation characteristics of Cu(In, Ga)Se2 solar cell films and its effects on laser induced breakdown spectroscopy analysis. International Journal of Precision Engineering and Manufacturing-Green Technology, 3(2), 167–171.CrossRefGoogle Scholar
  10. 10.
    Ali, M. Y., Hung, W., & Yongqi, F. (2010). A review of focused ion beam sputtering. International Journal of Precision Engineering and Manufacturing-Green Technology, 11(1), 157–170.CrossRefGoogle Scholar
  11. 11.
    Huber, N., Eschlböck-Fuchs, S., Scherndl, H., Freimund, A., Heitz, J., & Pedarnig, J. D. (2014). In-line measurements of chlorine containing polymers in an industrial waste sorting plant by laser-induced breakdown spectroscopy. Applied Surface Science, 302, 280–285.CrossRefGoogle Scholar
  12. 12.
    Grassi, R., et al. (2017). Three-dimensional compositional mapping using double-pulse micro-laser-induced breakdown spectroscopy technique. Spectrochimica Acta Part B: Atomic Spectroscopy, 127, 1–6.CrossRefGoogle Scholar
  13. 13.
    Dong, M., Mao, X., Gonzalez, J. J., Lu, J., & Russo, R. E. (2012). Time-resolved LIBS of atomic and molecular carbon from coal in air, argon and helium. Journal of Analytical Atomic Spectrometry, 27(12), 2066–2075.CrossRefGoogle Scholar
  14. 14.
    Aguilera, J. A., & Aragón, C. (1999). A comparison of the temperatures and electron densities of laser-produced plasmas obtained in air, argon, and helium at atmospheric pressure. Applied Physics A, 69(1), S475–S478.CrossRefGoogle Scholar
  15. 15.
    Kim, C.-K., In, J.-H., Lee, S.-H., & Jeong, S. (2013). Influence of Ar buffer gas on the LIBS signal of thin CIGS films. Journal of Analytical Atomic Spectrometry, 28(4), 460–467.CrossRefGoogle Scholar
  16. 16.
    Bashir, S., Farid, N., Mahmood, K., & Rafique, M. S. (2012). Influence of ambient gas and its pressure on the laser-induced breakdown spectroscopy and the surface morphology of laser-ablated Cd. Applied Physics A, 107(1), 203–212.CrossRefGoogle Scholar
  17. 17.
    Detalle, V., Sabsabi, M., St-Onge, L., Hamel, A., & Héon, R. (2003). Influence of Er:YAG and Nd:YAG wavelengths on laser-induced breakdown spectroscopy measurements under air or helium atmosphere. Applied Optics, 42(30), 5971–5977.CrossRefGoogle Scholar
  18. 18.
    Günther, D., & Heinrich, C. A. (1999). Enhanced sensitivity in laser ablation-ICP mass spectrometry using helium-argon mixtures as aerosol carrier. Journal of Analytical Atomic Spectrometry, 14(9), 1363–1368.CrossRefGoogle Scholar
  19. 19.
    Kaiser, J., et al. (2009). Mapping of lead, magnesium and copper accumulation in plant tissues by laser-induced breakdown spectroscopy and laser-ablation inductively coupled plasma mass spectrometry. Spectrochimica Acta Part B: Atomic Spectroscopy, 64(1), 67–73.CrossRefGoogle Scholar
  20. 20.
    Caballero, R., et al. (2009). The influence of Na on low temperature growth of CIGS thin film solar cells on polyimide substrates. Thin Solid Films, 517(7), 2187–2190.CrossRefGoogle Scholar
  21. 21.
    Kim, T.-W., Lee, J.-Y., Kim, D.-H., & Pahk, H.-J. (2013). Ultra-short laser patterning of thin-film CIGS solar cells through glass substrate. International Journal of Precision Engineering and Manufacturing-Green Technology, 14(8), 1287–1292.CrossRefGoogle Scholar
  22. 22.
    Kamikawa-Shimizu, Y., et al. (2009). Effects of Mo back contact thickness on the properties of CIGS solar cells. Physica Status Solidi A, 206(5), 1063–1066.CrossRefGoogle Scholar

Copyright information

© Korean Society for Precision Engineering 2019

Authors and Affiliations

  1. 1.Process Technology DepartmentLG ElectronicsPyeongtaek-siRepublic of Korea
  2. 2.School of Mechanical EngineeringGwangju Institute of Science and TechnologyGwangjuRepublic of Korea
  3. 3.Advanced Optical Lens Research CenterKorea Photonics Technology InstituteGwangjuRepublic of Korea

Personalised recommendations