Advertisement

Effects of Nanoscale PEALD YSZ Interlayer for AAO Based Thin Film Solid Oxide Fuel Cells

  • Gu Young Cho
  • Wonjong Yu
  • Yoon Ho Lee
  • Yeageun Lee
  • Waqas Hassan Tanveer
  • Yusung Kim
  • Sanghoon Lee
  • Suk Won ChaEmail author
Regular Paper
  • 46 Downloads

Abstract

Performance of thin film solid oxide fuel cells (TF-SOFCs) were improved by inserting plasma enhanced atomic layer deposition (PEALD) of yttira-stabilized zirconia (YSZ) interlayers. By controlling the ratio between Y2O3 and ZrO2 in YSZ deposition supercycles, Y2O3 mol.% in YSZ films were changed. High Y2O3 contained PEALD YSZ interlayered cell showed higher maximum power density (123.6 mW/cm2 at 500 °C, 286.1 mW/cm2 at 550 °C) and smaller polarization resistance compared with reference Y2O3 concentrated PEALD YSZ interlayer cell. (108.5 mW/cm2 at 500 °C, 181.1 mW/cm2 at 550 °C) Exchange current densities of TF-SOFCs at 500 °C also improved ~ 59.3% at high Y2O3 concentrated PEALD YSZ interlayer cells. These phenomena caused by high density of oxygen vacancies in high Y2O3 concentrated PEALD YSZ interlayer, which helps oxygen incorporation reactions at cathode-interlayer interface. Therefore, cathodic polarization loss related with oxygen reduction reactions was decreased, and then, performance and exchange current density were improved. Results of this study imply that insertion of simple PEALD YSZ interlayer at cathode-electrolyte interface efficiently improves performance and electrochemical characteristics of TF-SOFCs.

Keywords

Plasma enhanced atomic layer deposition Thin film solid oxide fuel cells Yttria stabilized zirconia Thin film Exchange current density 

List of symbols

R

Ideal gas constant

T

Absolute temperature

α

Charge transfer coefficient

n

Number of electrons

F

Faraday constant

j

Current density

j0

Exchange current density

ηact

Activation overpotential

Notes

Acknowledgements

This work was partially supported by the “New & Renewable Energy Core Technology Program” of the Korea Institute of Energy Technology Evaluation and Planning (KETEP), granted financial resource from the Ministry of Trade, Industry & Energy, Republic of Korea. (No. 20153030040930) (KIST 2E26590). This work was also partially supported by the Global Frontier R&D Program on Center for Multiscale Energy System funded by the National Research Foundation under the Ministry of Science, ICT & Future Planning, Korea (2012M3A6A7054855).

Compliance with ethical standards

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

References

  1. 1.
    O’Hayre, R. P., Cha, S.-W., Colella, W., & Prinz, F. B. (2006). Fuel Cell Fundamentals. New York: Wiley.Google Scholar
  2. 2.
    Choi, H., Cho, G. Y., & Cha, S. W. (2014). Fabrication and characterization of anode supported YSZ/GDC bilayer electrolyte SOFC using dry press process. International Journal of Precision Engineering and Manufacturing-Green Technology, 1(2), 95–99.CrossRefGoogle Scholar
  3. 3.
    Ji, S., Chang, I., Cho, G. Y., Lee, Y. H., Shim, J. H., & Cha, S. W. (2014). Application of dense nano-thin platinum films for low-temperature solid oxide fuel cells by atomic layer deposition. International Journal of Hydrogen Energy, 39(23), 12402–12408.CrossRefGoogle Scholar
  4. 4.
    Cho, G. Y., Lee, Y. H., & Cha, S. W. (2014). Multi-component nano-composite electrode for SOFCS via thin film technique. Renewable Energy, 65, 130–136.CrossRefGoogle Scholar
  5. 5.
    Ji, S., Cho, G. Y., Yu, W., Su, P., Lee, M. H., & Cha, S. W. (2015). Plasma-enhanced atomic layer deposition of nanoscale yttria- stabilized zirconia electrolyte for solid oxide fuel cells with porous substrate. ACS Applied Materials and Interfaces, 7, 2998–3002.CrossRefGoogle Scholar
  6. 6.
    Park, J., Lee, Y., Chang, I., Lee, W., & Cha, S. W. (2015). Engineering of the electrode structure of thin film solid oxide fuel cells. Thin Solid Films, 584, 125–129.CrossRefGoogle Scholar
  7. 7.
    Park, J., Chang, I., Paek, J. Y., Ji, S., Lee, W., Cha, S. W., et al. (2014). Fabrication of the large area thin-film solid oxide fuel cells. CIRP Journal of Manufacturing Technology, 63(1), 513–516.CrossRefGoogle Scholar
  8. 8.
    Kang, S., Chang, I., Kim, Y.-B., & Cha, S. W. (2015). Influence of a platinum functional layer on a Ni-Ce0.9Gd0.1O1 95 anode for thin-film solid oxide fuel cells. Journal of Vacuum Science & Technology A Vacuum Surfaces and Films, 33(5), 05E120.CrossRefGoogle Scholar
  9. 9.
    Jee, Y., Cho, G. Y., An, J., Kim, H.-R., Son, J.-W., Lee, J.-H., et al. (2014). High performance Bi-layered electrolytes via atomic layer deposition for solid oxide fuel cells. Journal of Power Sources, 253, 114–122.CrossRefGoogle Scholar
  10. 10.
    Cho, G. Y., Noh, S., Lee, Y. H., Ji, S., Hong, S. W., Koo, B., et al. (2016). Properties of nanostructured undoped ZrO2 thin film electrolytes by plasma enhanced atomic layer deposition for thin film solid oxide fuel cells. Journal of Vacuum Science & Technology A Vacuum Surfaces and Films, 34(1), 01A151.CrossRefGoogle Scholar
  11. 11.
    Cho, G. Y., Lee, Y. H., Hong, S. W., Bae, J., An, J., Kim, Y. B., et al. (2015). High-performance thin film solid oxide fuel cells with scandia-stabilized zirconia (ScSZ) thin film electrolyte. International Journal of Hydrogen Energy, 40(45), 15704–15708.CrossRefGoogle Scholar
  12. 12.
    Yu, W., Ji, S., Cho, G. Y., Noh, S., Tanveer, W. H., An, J., et al. (2015). Atomic layer deposition of ultrathin blocking layer for low-temperature solid oxide fuel cell on nanoporous substrate. Journal of Vacuum Science & Technology A, 33, 01A145.  https://doi.org/10.1116/1.4904206.CrossRefGoogle Scholar
  13. 13.
    Paek, J. Y., Chang, I., Lee, M. H., & Ji, S. (2013). Influence of target to substrate distance on properties of Y-doped BaZrO3 thin films grown by pulsed laser deposition. International Journal of Precision Engineering and Manufacturing, 14(5), 839–843.CrossRefGoogle Scholar
  14. 14.
    Ji, S., Ha, J., Park, T., Kim, Y., Koo, B., & Kim, Y. B. (2016). Substrate-dependent growth of nanothin film solid oxide fuel cells toward cost-effective nanostructuring. International Journal of Precision Engineering and Manufacturing-Green Technology, 3(1), 35–39.CrossRefGoogle Scholar
  15. 15.
    Tanveer, W. H., Ji, S., Yu, W., & Cha, S. W. (2015). Characterization of atomic layer deposited and sputtered yttria-stabilized-zirconia thin films for low- temperature solid oxide fuel cells. International Journal of Precision Engineering and Manufacturing, 16(10), 2229–2234.CrossRefGoogle Scholar
  16. 16.
    Chang, I., Kim, D., Lee, Y., Hong, S., & Cha, S. W. (2016). Effect of ultra-thin SnO2 coating on Pt catalyst for energy applications. International Journal of Precision Engineering and Manufacturing, 17(5), 691–694.CrossRefGoogle Scholar
  17. 17.
    Kim, K. P., Bae, K., Kim, K. H., & Shim, J. H. (2012). Reduction of residual thermal stress on anode- supported SOFCs using porous aid layers. International Journal of Precision Engineering and Manufacturing, 13(12), 2149–2154.CrossRefGoogle Scholar
  18. 18.
    Yu, W., Lee, Y., Lee, Y. H., Cho, G. Y., Park, T., Tanveer, W. H., et al. (2016). Performance enhancement of thin film LSCF cathodes by gold current collecting layer. International Journal of Precision Engineering and Manufacturing-Green Technology, 3(2), 185–188.CrossRefGoogle Scholar
  19. 19.
    Noh, S., Cho, G. Y., Lee, Y. H., Yu, W., An, J., & Cha, S. W. (2015). Performance enhancement in thin film solid oxide fuel cells using metal-mixed ionic electronic conductors bilayer anode. Science of Advanced Materials, 7, 1–6.CrossRefGoogle Scholar
  20. 20.
    An, J., Kim, Y. B., Park, J., Gür, T. M., & Prinz, F. B. (2013). Three-dimensional nanostructured bilayer solid oxide fuel cell with 1.3 W/cm2 at 450 °C. Nano Letters, 13(9), 4551–4555.CrossRefGoogle Scholar
  21. 21.
    Hong, S., Bae, J., Koo, B., & Kim, Y.-B. (2014). High-performance ultra-thin film solid oxide fuel cell using anodized-aluminum-oxide supporting structure. Electrochemistry Communications, 47, 1–4.CrossRefGoogle Scholar
  22. 22.
    An, J., Kim, Y. B., Gür, T. M., & Prinz, F. B. (2012). Enhancing charge transfer kinetics by nanoscale catalytic cermet interlayer. ACS Applied Materials & Interfaces, 4(12), 6790–6795.CrossRefGoogle Scholar
  23. 23.
    Kim, Y. B., Holme, T. P., Gür, T. M., & Prinz, F. B. (2011). Surface-modified low-temperature solid oxide fuel cell. Advanced Functional Materials, 21(24), 4684–4690.CrossRefGoogle Scholar
  24. 24.
    Kim, Y. B., Park, J. S., Gür, T. M., & Prinz, F. B. (2011). Oxygen activation over engineered surface grains on YDC/YSZ interlayered composite electrolyte for LT-SOFC. Journal of Power Sources, 196(24), 10550–10555.CrossRefGoogle Scholar
  25. 25.
    Chao, C.-C., Kim, Y. B., & Prinz, F. B. (2009). Surface modification of yttria-stabilized zirconia electrolyte by atomic layer deposition. Nano Letters, 9(10), 3626–3628.CrossRefGoogle Scholar
  26. 26.
    Shim, J. H., Park, J. S., Holme, T. P., Crabb, K., Lee, W., Kim, Y. B., et al. (2012). Enhanced oxygen exchange and incorporation at surface grain boundaries on an oxide ion conductor. Acta Materialia, 60(1), 1–7.CrossRefGoogle Scholar
  27. 27.
    Ji, S., Lee, Y. H., Park, T., Cho, G. Y., Noh, S., Lee, Y., et al. (2015). Doped ceria anode interlayer for low-temperature solid oxide fuel cells with nanothin electrolyte. Thin Solid Films, 591, 250–254.CrossRefGoogle Scholar
  28. 28.
    An, J., Kim, Y. B., Jung, H. J., Park, J. S., Cha, S. W., Gür, T. M., et al. (2012). Structural and compositional analysis of solid oxide fuel cell electrolytes using transmission electron microscopy. International Journal of Precision Engineering and Manufacturing, 13(7), 1273–1279.CrossRefGoogle Scholar

Copyright information

© Korean Society for Precision Engineering 2019

Authors and Affiliations

  • Gu Young Cho
    • 1
  • Wonjong Yu
    • 1
  • Yoon Ho Lee
    • 1
  • Yeageun Lee
    • 1
  • Waqas Hassan Tanveer
    • 1
  • Yusung Kim
    • 1
  • Sanghoon Lee
    • 1
  • Suk Won Cha
    • 1
    Email author
  1. 1.Department of Mechanical Engineering and Aerospace EngineeringSeoul National UniversitySeoulSouth Korea

Personalised recommendations