Advertisement

Dispersion Stability and Lubrication Mechanism of Nanolubricants: A Review

  • Nurul Farhanah AzmanEmail author
  • Syahrullail Samion
Review Paper
  • 54 Downloads

Abstract

The advent of nanotechnology has resulted in a significant number of experimental studies over the past decades into the use of nanoparticles as lubricant additives (also known as nanolubricants). Nanolubricants offer a solution to the environmental problems associated with traditional lubricant additives that contain sulphur, chlorine and phosphorus. Despite their excellent tribological performance, the poor long-term stability of nanolubricants limits their use in real applications. We herein present a review of recent efforts and progress in the preparation of stable nanolubricants, including the evaluation of nanolubricants dispersion stability, factors that affect dispersion stability, and techniques to enhance stability of nanolubricants. This paper also discusses the effects of dispersion stability of nanolubricants on the tribological performance and lubrication mechanisms involved in the enhancement of tribological performance. Finally, research challenges and possible solutions to this problem are discusses.

Keywords

Nanolubricants Nanoparticles Dispersion stability Lubrication mechanisms 

Notes

Acknowledgements

The authors would like to express their thanks to the Research Management Centre (RMC) of Universiti Teknologi Malaysia for the Research University Grant, GUP (17H96, 15J28, 20H29), Faculty of Mechanical Engineering, UTM and Ministry of Education of Malaysia for their support.

Compliance with Ethical Standards

Conflict of Interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

References

  1. 1.
    Sathyaseelan, B., Manikandan, E., Lakshmanan, V., Baskaran, I., Sivakumar, K., Ladchumananandasivam, R., et al. (2016). Structural, optical and morphological properties of post-growth calcined TiO2 nanopowder For opto-electronic device application: Ex-situ studies. Journal of Alloys and Compounds, 671, 486–492.Google Scholar
  2. 2.
    Reddy, K. R., Gomes, V. G., & Hassan, M. (2014). Carbon functionalized TiO2 nanofibers for high efficiency photocatalysis. Materials Research Express, 1(1), 15012.Google Scholar
  3. 3.
    Zheng, Z. Q., Yao, J. D., Wang, B., & Yang, G. W. (2015). Light-controlling, flexible and transparent ethanol gas sensor based on ZnO nanoparticles for wearable devices. Scientific Reports, 5, 11070.Google Scholar
  4. 4.
    Choi, S., Lee, H., Ghaffari, R., Hyeon, T., & Kim, D. H. (2016). Recent advances in flexible and stretchable bio-electronic devices integrated with nanomaterials. Advanced Materials, 28(22), 4203–4218.Google Scholar
  5. 5.
    Ingole, S., Charanpahari, A., Kakade, A., Umare, S. S., Bhatt, D. V., & Menghani, J. (2013). Tribological behavior of nano TiO2 as an additive in base oil. Wear, 301(1–2), 776–785.Google Scholar
  6. 6.
    Luo, T., Wei, X., Huang, X., Huang, L., & Yang, F. (2014). Tribological properties of Al2O3 nanoparticles as lubricating oil additives. Ceramics International, 40(5), 7143–7149.Google Scholar
  7. 7.
    Gulzar, M., Masjuki, H. H., Varman, M., Kalam, M. A., Mufti, R. A., Zulkifli, N. W. M., et al. (2015). Improving the AW/EP ability of chemically modified palm oil by adding CuO and MoS2 nanoparticles. Tribology International, 88, 271–279.Google Scholar
  8. 8.
    Wang, X. J., Li, X., & Yang, S. (2009). Influence of pH and SDBS on the stability and thermal conductivity of nanofluids. Energy and Fuels, 23(5), 2684–2689.Google Scholar
  9. 9.
    Chou, R., Battez, A. H., Cabello, J. J., Viesca, J. L., Osorio, A., & Sagastume, A. (2010). Tribological behavior of polyalphaolefin with the addition of nickel nanoparticles. Tribology International, 43(12), 2327–2332.Google Scholar
  10. 10.
    Spikes, H. (2015). Friction modifier additives. Tribology Letters, 60(5), 1–26.Google Scholar
  11. 11.
    Devendiran, D. K., & Amirtham, V. A. (2016). A review on preparation, characterization, properties and applications of nanofluids. Renewable and Sustainable Energy Reviews, 60, 21–40.Google Scholar
  12. 12.
    Mosleh, M., Atnafu, N. D., Belk, J. H., & Nobles, O. M. (2009). Modification of sheet metal forming fluids with dispersed nanoparticles for improved lubrication. Wear, 267(5–8), 1220–1225.Google Scholar
  13. 13.
    Jiang, H., Li, H., Zan, C., Wang, F., Yang, Q., & Shi, L. (2014). Temperature dependence of the stability and thermal conductivity of an oil-based nanofluid. Thermochimica Acta, 579, 27–30.Google Scholar
  14. 14.
    Fontes, D. H., Ribatski, G., & Bandarra Filho, E. P. (2015). Experimental evaluation of thermal conductivity, viscosity and breakdown voltage AC of nanofluids of carbon nanotubes and diamond in transformer oil. Diamond and Related Materials, 58, 115–121.Google Scholar
  15. 15.
    Wan, Q., Jin, Y., Sun, P., & Ding, Y. (2014). Rheological and tribological behaviour of lubricating oils containing platelet MoS2 nanoparticles. Journal of Nanoparticle Research, 16(5), 2386.Google Scholar
  16. 16.
    Thottackkad, M. V., Rajendrakumar, P. K., & Prabhakaran, N. K. (2014). Tribological analysis of surfactant modified nanolubricants containing CeO2 nanoparticles. Tribology-Materials, Surfaces and Interfaces, 8(3), 125–130.Google Scholar
  17. 17.
    Koshy, C. P., Rajendrakumar, P. K., & Thottackkad, M. V. (2015). Evaluation of the tribological and thermo-physical properties of coconut oil added with MoS2 nanoparticles at elevated temperatures. Wear, 330, 288–308.Google Scholar
  18. 18.
    Taha-Tijerina, J., Peña-Paras, L., Narayanan, T. N., Garza, L., Lapray, C., Gonzalez, J., et al. (2013). Multifunctional Nanofluids with 2D nanosheets for thermal and tribological management. Wear, 302(1–2), 1241–1248.Google Scholar
  19. 19.
    Song, X., Zheng, S., Zhang, J., Li, W., Chen, Q., & Cao, B. (2012). Synthesis of monodispersed ZnAl2O4 nanoparticles and their tribology properties as lubricant additives. Materials Research Bulletin, 47(12), 4305–4310.Google Scholar
  20. 20.
    Lou, J. F., Zhang, H., & Wang, R. (2015). Experimental investigation of graphite nanolubricant used in a domestic refrigerator. Advances in Mechanical Engineering, 7(2), 1–9.Google Scholar
  21. 21.
    Ma, S., Zheng, S., Cao, D., & Guo, H. (2010). Anti-wear and friction performance of ZrO2 nanoparticles as lubricant additive. Particuology, 8(5), 468–472.Google Scholar
  22. 22.
    Maheswaran, R., & Sunil, J. (2016). Effect of nano sized garnet particles dispersion on the viscous behavior of extreme pressure lubricant oil. Journal of Molecular Liquids, 223, 643–651.Google Scholar
  23. 23.
    Sadeghinezhad, E., Mehrali, M., Saidur, R., Mehrali, M., Latibari, S. T., Akhiani, A. R., et al. (2016). A comprehensive review on graphene nanofluids: recent research, development and applications. Energy Conversion and Management, 111, 466–487.Google Scholar
  24. 24.
    Gulzar, M., Masjuki, H. H., Kalam, M. A., Varman, M., Zulkifli, N. W. M., Mufti, R. A., et al. (2016). Tribological performance of nanoparticles as lubricating oil additives. Journal of Nanoparticle Research, 18(8), 1–25.Google Scholar
  25. 25.
    Ghadimi, A., Saidur, R., & Metselaar, H. S. C. (2011). A review of nanofluid stability properties and characterization in stationary conditions. International Journal of Heat and Mass Transfer, 54(17–18), 4051–4068.Google Scholar
  26. 26.
    Sharma, S. K., & Gupta, S. M. (2016). Preparation and evaluation of stable nanofluids for heat transfer application: a review. Experimental Thermal and Fluid Science, 79, 202–212.Google Scholar
  27. 27.
    Anushree, C., & Philip, J. (2016). Assessment of long term stability of aqueous nanofluids using different experimental techniques. Journal of Molecular Liquids, 222, 350–358.Google Scholar
  28. 28.
    Kim, J. H., Mistry, K. K., Matsumoto, N., Sista, V., Eryilmaz, O. L., & Erdemir, A. (2012). Effect of surfactant on tribological performance and tribochemistry of boric acid based colloidal lubricants. Tribology-Materials, Surfaces and Interfaces, 6(3), 134–141.Google Scholar
  29. 29.
    Rasheed, A. K., Khalid, M., Rashmi, W., Gupta, T. C. S. M., & Chan, A. (2016). Graphene based nanofluids and nanolubricants—Review of recent developments. Renewable and Sustainable Energy Reviews, 63, 346–362.Google Scholar
  30. 30.
    Zin, V., Barison, S., Agresti, F., Colla, L., Pagura, C., & Fabrizio, M. (2016). Improved tribological and thermal properties of lubricants by graphene based nano-additives. RSC Advances, 6(64), 59477–59486.Google Scholar
  31. 31.
    Haghighi, E. B., Nikkam, N., Saleemi, M., Behi, M., Mirmohammadi, S. A., Poth, H., et al. (2013). Shelf stability of nanofluids and its effect on thermal conductivity and viscosity. Measurement Science and Technology, 24(10), 105301.Google Scholar
  32. 32.
    Zhang, Y., Li, C., Jia, D., Zhang, D., & Zhang, X. (2015). Experimental evaluation of MoS2 nanoparticles in Jet mql grinding with different types of vegetable oil as base oil. Journal of Cleaner Production, 87, 930–940.Google Scholar
  33. 33.
    Peng, D. X., Chen, C. H., Kang, Y., Chang, Y. P., & Chang, S. Y. (2010). Size effects of SiO2 nanoparticles as oil additives on tribology of lubricant. Industrial Lubrication and Tribology, 62(2), 111–120.Google Scholar
  34. 34.
    Ivanov, M., & Shenderova, O. (2017). Nanodiamond-based nanolubricants for motor oils. Current Opinion in Solid State and Materials Science, 21(1), 17–24.Google Scholar
  35. 35.
    Zheng, D., Cai, Z. B., Shen, M. X., Li, Z. Y., & Zhu, M. H. (2016). Investigation of the tribology behaviour of the graphene nanosheets as oil additives on textured alloy cast iron surface. Applied Surface Science, 387, 66–75.Google Scholar
  36. 36.
    Yin, J., Xia, X., Xiang, L., & Zhao, X. (2010). Conductivity and polarization of carbonaceous nanotubes derived from polyaniline nanotubes and their electrorheology when dispersed in silicone oil. Carbon, 48(10), 2958–2967.Google Scholar
  37. 37.
    Alves, S. M., Mello, V. S., Faria, E. A., & Camargo, A. P. P. (2016). Nanolubricants developed from tiny CuO nanoparticles. Tribology International, 100, 263–271.Google Scholar
  38. 38.
    Lee, J., Cho, S., Hwang, Y., Cho, H. J., Lee, C., Choi, Y., et al. (2009). Application of fullerene-added nano-oil for lubrication enhancement in friction surfaces. Tribology International, 42(3), 440–447.Google Scholar
  39. 39.
    Kotia, A., & Ghosh, S. K. (2015). Experimental analysis for rheological properties of aluminium oxide (Al2O3)/gear oil (SAE EP-90) nanolubricant used in HEMM. Industrial Lubrication and Tribology, 67(6), 600–605.Google Scholar
  40. 40.
    Clary, D. R., & Mills, G. (2011). Preparation and thermal properties of CuO particles. Journal of Physical Chemistry C, 115(5), 1767–1775.Google Scholar
  41. 41.
    Sharif, M. Z., Azmi, W. H., Redhwan, A. A. M., Mamat, R., & Yusof, T. M. (2017). Performance analysis of SiO2/PAG nanolubricant in automotive air conditioning system. International Journal of Refrigeration, 75, 204–216.Google Scholar
  42. 42.
    Ghaednia, H., Hossain, M. S., & Jackson, R. L. (2016). Tribological performance of silver nanoparticle—Enhanced polyethylene glycol lubricants. Tribology Transactions, 59(4), 585–592.Google Scholar
  43. 43.
    Vakili-Nezhaad, G. R., & Dorany, A. (2009). Investigation of the effect of multiwalled carbon nanotubes on the viscosity index of lube oil cuts. Chemical Engineering Communications, 196, 997–1007.Google Scholar
  44. 44.
    Wang, A., Chen, L., Xu, F., & Yan, Z. (2014). In situ synthesis of copper nanoparticles within ionic liquid-in-vegetable oil microemulsions and their direct use as high efficient nanolubricants. RSC Advances, 4, 45251–45257.Google Scholar
  45. 45.
    Ali, M. K. A., Xianjun, H., Mai, L., Qingping, C., Turkson, R. F., & Bicheng, C. (2016). Improving the tribological characteristics of piston ring assembly in automotive engines using Al2O3 and TiO2 nanomaterials as nano-lubricant additives. Tribology International, 103, 540–554.Google Scholar
  46. 46.
    Fedele, L., Colla, L., Bobbo, S., Barison, S., & Agresti, F. (2011). Experimental stability analysis of different water-based nanofluids. Nanoscale Research Letters, 6(1), 300.Google Scholar
  47. 47.
    Cremaschi, L., Bigi, A. A., Wong, T., & Deokar, P. (2015). Thermodynamic PROPERTIES of Al2O3 nanolubricants: Part 1—Effects on the two-phase pressure drop. Science and Technology for the Built Environment, 21(5), 607–620.Google Scholar
  48. 48.
    Kedzierski, M. A. (2013). Viscosity and density of aluminum oxide nanolubricant. International Journal of Refrigeration, 36(4), 1333–1340.Google Scholar
  49. 49.
    Lee, J., Yoon, Y. J., Eaton, J. K., Goodson, K. E., & Bai, S. J. (2014). Analysis of oxide (Al2O3, CuO, and ZnO) and CNT nanoparticles disaggregation effect on the thermal conductivity and the viscosity of nanofluids. International Journal of Precision Engineering and Manufacturing, 15(4), 703–710.Google Scholar
  50. 50.
    Zhu, H., Li, C., Wu, D., Zhang, C., & Yin, Y. (2010). Preparation, characterization, viscosity and thermal conductivity of CaCO3 aqueous nanofluids. Science China Technological Sciences, 53(2), 360–368.Google Scholar
  51. 51.
    Rivera-Solorio, C. I., Payán-Rodríguez, L. A., García-Cuéllar, A. J., Ramón-Raygoza, E. D., Cadena-de-la-Peña, N. L., & Medina-Carreón, D. (2013). Formulation techniques for nanofluids. Recent Patents on Nanotechnology, 7(3), 208–215.Google Scholar
  52. 52.
    Guo, D., Xie, G., & Luo, J. (2014). Mechanical properties of nanoparticles: basics and applications. Journal of Physics. D. Applied Physics, 47, 1–25.Google Scholar
  53. 53.
    Sabareesh, R. K., Gobinath, N., Sajith, V., Das, S., & Sobhan, C. B. (2012). Application of TiO2 nanoparticles as a lubricant-additive for vapor compression refrigeration systems–An experimental investigation. International Journal of Refrigeration, 35(7), 1989–1996.Google Scholar
  54. 54.
    Silambarasan, M., Manikandan, S., & Rajan, K. S. (2012). Viscosity and thermal conductivity of dispersions of sub-micron TiO2 particles in water prepared by stirred bead milling and ultrasonication. International Journal of Heat and Mass Transfer, 55(25–26), 7991–8002.Google Scholar
  55. 55.
    Yu, W., & Xie, H. (2012). A review on nanofluids: preparation, stability mechanisms, and applications. Journal of Nanomaterials, 2012, 1–17.Google Scholar
  56. 56.
    Chang, H., Li, Z. Y., Kao, M. J., Huang, K. D., & Wu, H. M. (2010). Tribological property of TiO2 nanolubricant on piston and cylinder surfaces. Journal of Alloys and Compounds, 495(2), 481–484.Google Scholar
  57. 57.
    Azman, S. S. N., Zulkifli, N. W. M., Masjuki, H., Gulzar, M., & Zahid, R. (2016). Study of tribological properties of lubricating oil blend added with graphene nanoplatelets. Journal of Materials Research, 31(13), 1932–1938.Google Scholar
  58. 58.
    Kogovšek, J., & Kalin, M. (2014). Various MoS2-, WS2- and C-based micro- and nanoparticles in boundary lubrication. Tribology Letters, 53(3), 585–597.Google Scholar
  59. 59.
    Zhang, L., Chen, L., Wan, H., Chen, J., & Zhou, H. (2011). Synthesis and tribological properties of stearic acid-modified anatase (TiO2) nanoparticles. Tribology Letters, 41(2), 409–416.Google Scholar
  60. 60.
    Li, Z., Hou, X., Yu, L., Zhang, Z., & Zhang, P. (2014). Preparation of lanthanum trifluoride nanoparticles surface-capped by tributyl phosphate and evaluation of their tribological properties as lubricant additive in liquid paraffin. Applied Surface Science, 292, 971–977.Google Scholar
  61. 61.
    Jiang, Z., Zhang, Y., Yang, G., Yang, K., Zhang, S., Yu, L., et al. (2016). Tribological properties of oleylamine-modified ultrathin WS 2 nanosheets as the additive in polyalpha olefin over a wide temperature range. Tribology Letters, 61(3), 24.Google Scholar
  62. 62.
    Wu, D., Zhu, H., Wang, L., & Liu, L. (2009). Critical issues in nanofluids preparation, characterization and thermal conductivity. Current Nanoscience, 5(1), 103–112.Google Scholar
  63. 63.
    Mestrom, L., Lenders, J. J., de Groot, R., Hooghoudt, T., Sommerdijk, N. A., & Artigas, M. V. (2015). Stable ferrofluids of magnetite nanoparticles in hydrophobic ionic liquids. Nanotechnology, 26(28), 285602.Google Scholar
  64. 64.
    Choi, Y., Hwang, Y., Park, M., Lee, J., Choi, C., Jung, M., et al. (2011). Investigation of anti-wear and extreme pressure properties of nano-lubricant using graphite and Ag nanoparticles. Journal of Nanoscience and Nanotechnology, 11(1), 560–565.Google Scholar
  65. 65.
    Choi, C., Yoo, H. S., & Oh, J. M. (2008). Preparation and heat transfer properties of nanoparticle-in-transformer oil dispersions as advanced energy-efficient coolants. Current Applied Physics, 8(6), 710–712.Google Scholar
  66. 66.
    Yu, F., Chen, Y., Liang, X., Xu, J., Lee, C., Liang, Q., et al. (2017). Dispersion stability of thermal nanofluids. Progress in Natural Science: Materials International, 27(5), 531–542.Google Scholar
  67. 67.
    Sadri, R., Ahmadi, G., Togun, H., Dahari, M., Kazi, S. N., Sadeghinezhad, E., et al. (2014). An experimental study on thermal conductivity and viscosity of nanofluids containing carbon nanotubes. Nanoscale research letters, 9(1), 151.Google Scholar
  68. 68.
    Thottackkad, M. V., Perikinalil, R. K., & Kumarapillai, P. N. (2012). Experimental evaluation on the tribological properties of coconut oil by the addition of CuO nanoparticles. International Journal of Precision Engineering and Manufacturing, 13(1), 111–116.Google Scholar
  69. 69.
    Kamalgharibi, M., Hormozi, F., Zamzamian, S. A. H., & Sarafraz, M. M. (2016). Experimental studies on the stability of CuO nanoparticles dispersed in different base fluids: Influence of stirring, sonication and surface active agents. Heat and Mass Transfer, 52(1), 55–62.Google Scholar
  70. 70.
    Wamkam, C. T., Opoku, M. K., Hong, H., & Smith, P. (2011). Effects of pH on heat transfer nanofluids containing ZrO2 and TiO= nanoparticles. Journal of Applied Physics, 109(2), 024305.Google Scholar
  71. 71.
    Li, D., Hong, B., Fang, W., Guo, Y., & Lin, R. (2010). Preparation of well-dispersed silver nanoparticles for oil-based nanofluids. Industrial and Engineering Chemistry Research, 49, 1697–1702.Google Scholar
  72. 72.
    Agarwal, D. K., Vaidyanathan, A., & Kumar, S. S. (2013). Synthesis and characterization of kerosene–alumina nanofluids. Applied Thermal Engineering, 60(1–2), 275–284.Google Scholar
  73. 73.
    Xing, M. B., & Wang, R. X. (2013). Nanorefrigeration oil formed by C60, CNTs and mineral oil for air conditioner. Advances in Materials Research, 629, 247–254.Google Scholar
  74. 74.
    Jama, M., Singh, T., Gamaleldin, S. M., Koc, M., Samara, A., Isaifan, R. J., et al. (2016). Critical review on nanofluids: preparation, characterization, and applications. Journal of Nanomaterials, 2016, 1–22.Google Scholar
  75. 75.
    Dubey, M. K., Bijwe, J., & Ramakumar, S. S. V. (2013). PTFE based nano-lubricants. Wear, 306(1–2), 80–88.Google Scholar
  76. 76.
    Lee, G. J., & Rhee, C. K. (2014). Enhanced thermal conductivity of nanofluids containing graphene nanoplatelets prepared by ultrasound irradiation. Journal of Materials Science, 49(4), 1506–1511.Google Scholar
  77. 77.
    Alazemi, A. A., Dysart, A. D., Phuah, X. L., Pol, V. G., & Sadeghi, F. (2016). MoS2 nanolayer coated carbon spheres as an oil additive for enhanced tribological performance. Carbon, 110, 367–377.Google Scholar
  78. 78.
    Ettefaghi, E., Ahmadi, H., Rashidi, A., Mohtasebi, S. S., & Alaei, M. (2013). Experimental evaluation of engine oil properties containing copper oxide nanoparticles as a nanoadditive. International Journal of Industrial Chemistry, 4(1), 28.Google Scholar
  79. 79.
    Jatti, V. S., & Singh, T. P. (2015). Copper oxide nano-particles as friction-reduction and anti-wear additives in lubricating oil. Journal of Mechanical Science and Technology, 29(2), 793–798.Google Scholar
  80. 80.
    Choi, C., Oh, J. M. & Jung, M. H. (2013). Preparation method of lubricating oil and lubricating oil produced thereby. U.S. Patent 8,349,774.Google Scholar
  81. 81.
    Wan, Q., Jin, Y., Sun, P., & Ding, Y. (2015). Tribological behaviour of a lubricant oil containing boron nitride nanoparticles. Procedia Engineering, 102, 1038–1045.Google Scholar
  82. 82.
    Asadauskas, S. J., Brazinskiene, D., Bikulcius, G., Kreivaitis, R., & Padgurskas, J. (2015). Surfactant influence on stability and properties of metal nanoparticle suspensions in oil. In G. Biresaw & K. L. Mittal (Eds.), Surfactants in tribology (pp. 151–182). New York: Taylor and Francis Group.Google Scholar
  83. 83.
    Afifah, A. N., Syahrullail, S., & Sidik, N. A. C. (2016). Magnetoviscous effect and thermomagnetic convection of magnetic fluid: A review. Renewable and Sustainable Energy Reviews, 55, 1030–1040.Google Scholar
  84. 84.
    Zhou, J., Ralston, J., Sedev, R., & Beattie, D. A. (2009). Functionalized gold nanoparticles: Synthesis, structure and colloid stability. Journal of Colloid and Interface Science, 331(2), 251–262.Google Scholar
  85. 85.
    Timofeeva, E. V., Yu, W., France, D. M., Singh, D., & Routbort, J. L. (2011). Nanofluids for heat transfer: An engineering approach. Nanoscale Research Letters, 6(1), 182.Google Scholar
  86. 86.
    Halelfadl, S., Estellé, P., Aladag, B., Doner, N., & Maré, T. (2013). Viscosity of carbon nanotubes water-based nanofluids: Influence of concentration and temperature. International Journal of Thermal Sciences, 71, 111–117.Google Scholar
  87. 87.
    Ilyas, S. U., Pendyala, R., & Narahari, M. (2017). Stability and thermal analysis of MWCNT-thermal oil-based nanofluids. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 527, 11–22.Google Scholar
  88. 88.
    Zin, V., Agresti, F., Barison, S., Colla, L., Gondolini, A., & Fabrizio, M. (2013). The synthesis and effect of copper nanoparticles on the tribological properties of lubricant oils. IEEE Transactions on Nanotechnology, 12(5), 751–759.Google Scholar
  89. 89.
    Yang, L., Du, K., Zhang, X. S., & Cheng, B. (2011). Preparation and stability of Al2O3 nano-particle suspension of ammonia–water solution. Applied Thermal Engineering, 31(17–18), 3643–3647.Google Scholar
  90. 90.
    Jendrzej, S., Gökce, B., & Barcikowski, S. (2017). Colloidal stability of metal nanoparticles in engine oil under thermal and mechanical load. Chemical Engineering and Technology, 40(9), 1569–1576.Google Scholar
  91. 91.
    Padgurskas, J., Rukuiža, R., Kreivaitis, R., Asadauskas, S. J., & Bražinskienė, D. (2009). Tribologic behaviour and suspension stability of iron and copper nanoparticles in rapeseed and mineral oils. Tribology-Materials, Surfaces and Interfaces, 3(3), 97–102.Google Scholar
  92. 92.
    Kole, M., & Dey, T. K. (2011). Effect of aggregation on the viscosity of copper oxide-gear oil nanofluids. International Journal of Thermal Sciences, 50(9), 1741–1747.Google Scholar
  93. 93.
    Ali, M. K. A., Xianjun, H., Elagouz, A., Essa, F. A., & Abdelkareem, M. A. (2016). Minimizing of the boundary friction coefficient in automotive engines using Al2O3 and TiO2 nanoparticles. Journal of Nanoparticle Research, 18(12), 377.Google Scholar
  94. 94.
    Nallasamy, P., Saravanakumar, N., Nagendran, S., Suriya, E. M., & Yashwant, D. (2015). Tribological investigations on MoS 2—Based nanolubricant for machine tool slideways. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 229(5), 559–567.Google Scholar
  95. 95.
    Ali, M. K. A., Xianjun, H., Mai, L., Bicheng, C., Turkson, R. F., & Qingping, C. (2016). Reducing frictional power losses and improving the scuffing resistance in automotive engines using hybrid nanomaterials as nano-lubricant additives. Wear, 365, 270–281.Google Scholar
  96. 96.
    Gupta, R. N., & Harsha, A. P. (2017). Antiwear and extreme pressure performance of castor oil with nano-additives. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 0, 1–13.Google Scholar
  97. 97.
    Abdullah, M. I. H. C., Abdollah, M. F., Tamaldin, N., Amiruddin, H., & Nuri, N. R. M. (2016). Effect of hexagonal boron nitride nanoparticles as an additive on the extreme pressure properties of engine oil. Industrial Lubrication and Tribology, 68(4), 441–445.Google Scholar
  98. 98.
    Gupta, M. K., Bijwe, J., & Kadiyala, A. K. (2017). Tribo-investigations on oils with dispersants and hexagonal boron nitride particles. Journal of Tribology, 140(3), 31801.Google Scholar
  99. 99.
    Sánchez-López, J. C., Abad, M. D., Kolodziejczyk, L., Guerrero, E., & Fernández, A. (2011). Surface-modified Pd and Au nanoparticles for anti-wear applications. Tribology International, 44, 720–726.Google Scholar
  100. 100.
    Chen, T., Xia, Y., Jia, Z., Liu, Z., & Zhang, H. (2014). Synthesis, characterization, and tribological behavior of oleic acid capped graphene oxide. J Nanomater., 2014(3), 1–8.Google Scholar
  101. 101.
    Xiong, X., Kang, Y., & Yang, G. (2012). Preparation and evaluation of tribological properties of cu nanoparticles surface modified by tetradecyl hydroxamic acid. Tribology Letters, 46, 211–220.Google Scholar
  102. 102.
    Meng, Y., Su, F., & Chen, Y. (2015). Synthesis of nano-Cu/graphene oxide composites by supercritical CO2—Assisted deposition as a novel material for reducing friction and wear. Chemical Engineering Journal, 281, 11–19.Google Scholar
  103. 103.
    Jia, Z., Chen, T., Wang, J., Ni, J., Li, H., & Shao, X. (2015). Synthesis, characterization and tribological properties of Cu/reduced graphene oxide composites. Tribology International, 88, 17–24.Google Scholar
  104. 104.
    Peng, D., Kang, Y., Chen, C., & Shu, S. C. F. (2009). The tribological behavior of modified diamond nanoparticles in liquid paraffin. Industrial Lubrication and Tribology, 61(4), 213–219.Google Scholar
  105. 105.
    Yu, L., Zhang, L., Ye, F., Sun, M., Cheng, X., & Diao, G. (2012). Preparation and tribological properties of surface-modified nano-Y2O3 as additive in liquid paraffin. Applied Surface Science, 263, 655–659.Google Scholar
  106. 106.
    Srinivas, V., Thakur, R. N., & Jain, A. K. (2017). Antiwear, antifriction, and extreme pressure properties of motor bike engine oil dispersed with molybdenum disulfide nanoparticles. Tribology Transactions, 60(1), 12–19.Google Scholar
  107. 107.
    Zhao, J., He, Y., Wang, Y., Wang, W., Yan, L., & Luo, J. (2016). An investigation on the tribological properties of multilayer graphene and Mos2 nanosheets as additives used in hydraulic applications. Tribology International, 97, 14–20.Google Scholar
  108. 108.
    Peña-Parás, L., Taha-Tijerina, J., García, A., Maldonado, D., González, J. A., Molina, D., et al. (2014). Antiwear and extreme pressure properties of nanofluids for industrial applications. Tribology Transactions, 57(6), 1072–1076.Google Scholar
  109. 109.
    Hwang, Y., Lee, C., Choi, Y., Cheong, S., Kim, D., Lee, K., et al. (2011). Effect of the size and morphology of particles dispersed in nano-oil on friction performance between rotating discs. Journal of Mechanical Science and Technology, 25(11), 2853–2857.Google Scholar
  110. 110.
    Hu, K. H., Liu, M., Wang, Q. J., Xu, Y. F., Schraube, S., & Hu, X. G. (2009). Tribological properties of molybdenum disulfide nanosheets by monolayer restacking process as additive in liquid paraffin. Tribology International, 42(1), 33–39.Google Scholar
  111. 111.
    Xie, H., Jiang, B., He, J., Xia, X., & Pan, F. (2016). Lubrication performance of MoS2 and SiO2 nanoparticles as lubricant additives in magnesium alloy-steel contacts. Tribology International, 93, 63–70.Google Scholar
  112. 112.
    Zareh-Desari, B., Abaszadeh-Yakhforvazani, M., & Khalilpourazary, S. (2015). The effect of nanoparticle additives on lubrication performance in deep drawing process: Evaluation of forming load, friction coefficient and surface quality. International Journal of Precision Engineering and Manufacturing, 16(5), 929–936.Google Scholar
  113. 113.
    Khalil, W., Mohamed, A., Bayoumi, M., & Osman, T. A. (2016). Tribological properties of dispersed carbon nanotubes in lubricant. Fullerenes, Nanotub Carbon Nanostructures, 24(7), 479–485.Google Scholar
  114. 114.
    Choi, Y., Lee, C., Hwang, Y., Park, M., Lee, J., Choi, C., et al. (2009). Tribological behavior of copper nanoparticles as additives in oil. Current Applied Physics, 9(2), e124–e127.Google Scholar
  115. 115.
    Zareh-Desari, B., & Davoodi, B. (2016). Assessing the lubrication performance of vegetable oil-based nano-lubricants for environmentally conscious metal forming processes. J Clean Prod., 135, 1198–1209.Google Scholar
  116. 116.
    Chen, Y., Zhang, Y., Zhang, S., Yu, L., Zhang, P., & Zhang, Z. (2013). Preparation of nickel-based nanolubricants via a facile in situ one-step route and investigation of their tribological properties. Tribology Letters, 51, 73–83.Google Scholar
  117. 117.
    Alves, S. M., Barros, B. S., Trajano, M. F., Ribeiro, K. S. B., & Moura, E. (2013). Tribological behavior of vegetable oil-based lubricants with nanoparticles of oxides in boundary lubrication conditions. Tribology International, 65, 28–36.Google Scholar
  118. 118.
    Ratoi, M., Niste, V. B., & Zekonyte, J. (2014). WS2 nanoparticles—Potential replacement for ZDDP and friction modifier additives. RSC Advances, 4(41), 21238.Google Scholar
  119. 119.
    Zhang, M., Wang, X., & Liu, W. (2013). Tribological behavior of LaF3 nanoparticles as additives in poly-alpha-olefin. Industrial Lubrication and Tribology, 65(4), 226–235.Google Scholar
  120. 120.
    Boshui, C., Kecheng, G., Jianhua, F., Jiang, W., Jiu, W., & Nan, Z. (2015). Tribological characteristics of monodispersed cerium borate nanospheres in biodegradable rapeseed oil lubricant. Applied Surface Science, 353, 326–332.Google Scholar
  121. 121.
    Sia, S. Y., Bassyony, E. Z., & Sarhan, A. A. D. (2014). Development of SiO2 nanolubrication system to be used in sliding bearings. International Journal of Advanced Manufacturing Technology, 71(5–8), 1277–1284.Google Scholar
  122. 122.
    Aldana, P. U., Dassenoy, F., Vacher, B., Le Mogne, T., & Thiebaut, B. (2016). WS2 nanoparticles anti-wear and friction reducing properties on rough surfaces in the presence of ZDDP additive. Tribology International, 102, 213–221.Google Scholar
  123. 123.
    Ku, B. C., Han, Y. C., Lee, J. E., Lee, J. K., Park, S. H., & Hwang, Y. J. (2010). Tribological effects of fullerene (C60) nanoparticles added in mineral lubricants according to its viscosity. International Journal of Precision Engineering and Manufacturing, 11(4), 607–611.Google Scholar
  124. 124.
    Bao, Y. Y., Sun, J. L., & Kong, L. H. (2017). Tribological properties and lubricating mechanism of SiO2 nanoparticles in water-based fluid. IOP Conference Series: Materials Science and Engineering, 182, 12025.Google Scholar
  125. 125.
    Azman, N. F., Syahrullail, S., & Sot, M. N. H. M. (2018). Investigation of tribological properties of CuO/palm oil nanolubricant using pin-on-disc tribotester. Green materials, 6, 30–37.Google Scholar
  126. 126.
    Lee, C., Hwang, Y., Choi, Y., Lee, J., Choi, C., & Oh, J. (2009). A study on the tribological characteristics of graphite nano lubricants. International Journal of Precision Engineering and Manufacturing, 10(1), 85–90.Google Scholar
  127. 127.
    Rahmati, B., Sarhan, A. A. D., & Sayuti, M. (2014). Morphology of surface generated by end milling AL6061-T6 using molybdenum disulfide (Mos2) nanolubrication in end milling machining. Journal of Cleaner Production, 66, 685–691.Google Scholar
  128. 128.
    Çelik, O. N., Ay, N., & Göncü, Y. (2013). Effect of nano hexagonal boron nitride lubricant additives on the friction and wear properties of AISI 4140 Steel. Particulate Science and Technology, 31(5), 501–506.Google Scholar
  129. 129.
    López, T. D. F., González, A. F., Del Reguero, Á., Matos, M., Díaz-García, M. E., & Badía-Laíño, R. (2015). Engineered silica nanoparticles as additives in lubricant oils. Science and Technology of Advanced Materials, 16(5), 1–11.Google Scholar
  130. 130.
    Sia, S. Y., & Sarhan, A. A. D. (2014). Morphology investigation of worn bearing surfaces using SiO2 nanolubrication system. International Journal of Advanced Manufacturing Technology, 70, 1063–1071.Google Scholar
  131. 131.
    Gulzar, M., Masjuki, H. H., Kalam, M. A., Varman, M., Zulkifli, N. W. M., Mufti, R. A., et al. (2017). Dispersion stability and tribological characteristics of TiO2/SiO2 nanocomposite-enriched biobased lubricant. Tribology Transactions, 60(4), 670–680.Google Scholar
  132. 132.
    Kotia, A., Borkakoti, S., & Ghosh, S. K. (2018). Wear and performance analysis of a 4-stroke diesel engine employing nanolubricants. Particuology, 37, 54–63.Google Scholar
  133. 133.
    Chu, H. Y., Hsu, W. C., & Lin, J. F. (2010). Scuffing mechanism during oil-lubricated block-on-ring test with diamond nanoparticles as oil additive. Wear, 268(11–12), 1423–1433.Google Scholar
  134. 134.
    Dai, W., Kheireddin, B., Gao, H., & Liang, H. (2016). Roles of nanoparticles in oil lubrication. Tribology International, 102, 88–98.Google Scholar
  135. 135.
    Ramon-Raygoza, E. D., Rivera-Solorio, C. I., Gimenez-Torres, E., Maldonado-Cortes, D., Cardenas-Aleman, E., & Cue-Sampedro, R. (2016). Development of nanolubricant based on impregnated multilayer graphene for automotive applications: Analysis of tribological properties. Powder Technology, 302, 363–371.Google Scholar
  136. 136.
    Rasheed, A. K., Khalid, M., Javeed, A., Rashmi, W., Gupta, T. C. S. M., & Chan, A. (2016). Heat transfer and tribological performance of graphene nanolubricant in an internal combustion engine. Tribology International, 103, 504–515.Google Scholar
  137. 137.
    Lahouij, I., Dassenoy, F., de Knoop, L., Martin, J. M., & Vacher, B. (2011). In situ TEM observation of the behavior of an individual fullerene-like MoS2 nanoparticle in a dynamic contact. Tribology Letters, 42(2), 133–140.Google Scholar
  138. 138.
    Kalin, M., Kogovšek, J., & Remškar, M. (2012). Mechanisms and improvements in the friction and wear behavior using MoS2 nanotubes as potential oil additives. Wear, 280, 36–45.Google Scholar
  139. 139.
    Sgroi, M., Gili, F., Mangherini, D., Lahouij, I., Dassenoy, F., Garcia, I., et al. (2015). Friction reduction benefits in valve-train system using IF-MoS2 added engine oil. Tribology Transactions, 58(2), 207–214.Google Scholar
  140. 140.
    Talib, N., Nasir, R. M., & Rahim, E. A. (2017). Tribological behaviour of modified jatropha oil by mixing hexagonal boron nitride nanoparticles as a bio-based lubricant for machining processes. J Clean Prod., 147, 360–378.Google Scholar
  141. 141.
    Bhaumik, S., & Pathak, S. D. (2017). Effect of nano and micro friction modifier based lubricants on wear behavior between steel–steel contacts. Tribology in Industry, 39(1), 136–143.Google Scholar
  142. 142.
    Wang, Y., Li, C., Zhang, Y., Yang, M., Li, B. K., Dong, L., et al. (2018). Processing characteristics of vegetable oil-based nanofluid MQL for grinding different workpiece materials. International Journal of Precision Engineering and Manufacturing-Green Technology, 5(2), 327–339.Google Scholar
  143. 143.
    Thottackkad, V. M., Rajendrakumar, P. K., & Prabhakaran Nair, K. (2014). Experimental studies on the tribological behaviour of engine oil (SAE15W40) with the addition of CuO nanoparticles. Industrial Lubrication and Tribology, 66(2), 289–297.Google Scholar
  144. 144.
    Zhang, M., Wang, X., Liu, W., & Fu, X. (2009). Performance and anti-wear mechanism of Cu nanoparticles as lubricating oil additives. Industrial Lubrication and Tribology, 61(6), 311–318.Google Scholar
  145. 145.
    Trajano, M. F., Moura, E. I. F., Ribeiro, K. S. B., & Alves, S. M. (2014). Study of oxide nanoparticles as additives for vegetable lubricants. Materials Research, 17(5), 1124–1128.Google Scholar
  146. 146.
    Zhao, C., Jiao, Y., Chen, Y. K., & Ren, G. (2014). The tribological properties of zinc borate ultrafine powder as a lubricant additive in sunflower oil. Tribology Transactions, 57(3), 425–434.Google Scholar
  147. 147.
    Zeng, Z., & Tian, B. (2015). A study n wear and worn surfaces of grey cast iron affected by a novel silicate additive. Lubrication Science, 27(8), 479–487.Google Scholar

Copyright information

© Korean Society for Precision Engineering 2019

Authors and Affiliations

  1. 1.School of Mechanical Engineering, Faculty of EngineeringUniversiti Teknologi MalaysiaSkudaiMalaysia

Personalised recommendations