Pt-Sputtered Ti Mesh Electrode for Polymer Electrolyte Membrane Fuel Cells

  • Yun Sik Kang
  • Sunhee Jo
  • Daeil Choi
  • Jin Young Kim
  • Taehyun ParkEmail author
  • Sung Jong YooEmail author
Regular Paper


We suggest a new type of membrane-electrode assembly (MEA) for polymer electrolyte membrane fuel cells (PEMFCs) to substitute the conventional Pt/C catalyst layer and carbon-based gas diffusion layer. We fabricated the MEA by simply sputtering Pt on a commercially-available, porous Ti mesh, and this was directly hot-pressed into the polymer electrolyte membrane and thereby utilized as anodic and cathodic electrodes for PEMFC without any additional processing. The existence of Pt sputtered on the Ti mesh was confirmed via scanning electron microscopy with electron dispersive spectroscopy. In addition, the physical and electrochemical properties of Pt-sputtered Ti mesh were examined via X-ray diffraction and various electrochemical methods. The Pt-sputtered Ti mesh exhibited good catalytic activity toward hydrogen oxidation and oxygen reduction reactions, indicating that this Pt-sputtered Ti mesh can be applied as both electrodes for PEMFC. Finally, we also realized the fuel cell using a Pt-sputtered Ti mesh, and it showed a high open circuit voltage of 0.825 V and peak power density of 3.37 mW/cm2, which confirms its potential applicability to a real PEMFC operating environment.


Polymer electrolyte membrane fuel cell Electrode Gas-diffusion layer Pt sputter Ti mesh 



This work was supported financially by the Global Frontier R&D Program on Center for Multiscale Energy System (2016M3A6A7945505), an NRF Grant funded by MISP (2018M1A2A2061975, 2017R1C1B5076732), and the KIST Institutional Program.


  1. 1.
    Dodds, P. E., Staffell, I., Hawkes, A. D., Li, F., Grünewald, P., McDowall, W., et al. (2015). Hydrogen and fuel cell technologies for heating: A review. International Journal of Hydrogen Energy, 40, 2065–2083.CrossRefGoogle Scholar
  2. 2.
    Xuan, J., Leung, M. K. H., Leung, D. Y. C., & Ni, M. (2009). A review of biomass-derived fuel processors for fuel cell systems. Renewable and Sustainable Energy Reviews, 13, 1301–1313.CrossRefGoogle Scholar
  3. 3.
    Agnolucci, P. (2007). Economics and market prospects of portable fuel cells. International Journal of Hydrogen Energy, 32, 4319–4328.CrossRefGoogle Scholar
  4. 4.
    Yi, H. S., Jeong, J. B., Cha, S. W., & Zheng, C. H. (2018). Optimal component sizing of fuel cell-battery excavator based on workload. International Journal of Precision Engineering and Manufacturing-Green Technology, 5, 103–110.CrossRefGoogle Scholar
  5. 5.
    Zheng, C., & Cha, S. W. (2017). Real-time application of Pontryagin’s Minimum Principle to fuel cell hybrid buses based on driving characteristics of buses. International Journal of Precision Engineering and Manufacturing-Green Technology, 4, 199–209.CrossRefGoogle Scholar
  6. 6.
    Seo, Y. H., Kim, H. J., Jang, W. K., & Kim, B. H. (2014). Development of active breathing micro PEM fuel cell. International Journal of Precision Engineering and Manufacturing-Green Technology, 2014(1), 101–106.CrossRefGoogle Scholar
  7. 7.
    Ohayre, R., Lee, S. J., Cha, S. W., & Prinz, F. B. (2002). A sharp peak in the performance of sputtered platinum fuel cells at ultra-low platinum loading. Journal of Power Sources, 109, 483–493.CrossRefGoogle Scholar
  8. 8.
    Jung, N., Chung, D. Y., Ryu, J., Yoo, S. J., & Sung, Y. E. (2014). Pt-based nanoarchitecture and catalyst design for fuel cell applications. Nano Today, voo., 9, 433–456.CrossRefGoogle Scholar
  9. 9.
    Gasteiger, H. A., Kocha, S. S., Sompalli, B., & Wagner, F. T. (2005). Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs. Applied Catalysis, B: Environmental, 56, 9–35.CrossRefGoogle Scholar
  10. 10.
    Liang, X., Pan, G., Xu, L., & Wang, J. (2015). A modified decal method for preparing the membrane electrode assembly of proton exchange membrane fuel cells. Fuel, 139, 393–400.CrossRefGoogle Scholar
  11. 11.
    Cho, J. H., Kim, J. M., Prabhuram, J., Hwang, S. Y., Ahn, D. J., Ha, H. Y., et al. (2009). Fabrication and evaluation of membrane electrode assemblies by low-temperature decal methods for direct methanol fuel cells. Journal of Power Sources, 187, 378–386.CrossRefGoogle Scholar
  12. 12.
    Çögenli, M. S., Mukerjee, S., & Yurtcan, A. B. (2015). Membrane electrode assembly with ultra low platinum loading for cathode electrode of PEM fuel cell by using sputter deposition. Fuel Cells, 15, 288–297.CrossRefGoogle Scholar
  13. 13.
    Morozan, A., Jousselme, B., & Palacin, S. (2011). Low-platinum and platinum-free catalysts for the oxygen reduction reaction at fuel cell cathodes. Energy & Environmental Science, 4, 1238.CrossRefGoogle Scholar
  14. 14.
    Gruber, D., Ponath, N., Müller, J., & Lindstaedt, F. (2005). Sputter-deposited ultra-low catalyst loadings for PEM fuel cells. Journal of Power Sources, 150, 67–72.CrossRefGoogle Scholar
  15. 15.
    Hirano, S., Kim, J., & Srinivasan, S. (1997). High performance proton exchange membrane fuel cells with sputter-deposited Pt layer electrodes. Electrochimica Acta, 42, 1587–1593.CrossRefGoogle Scholar
  16. 16.
    Jung, C. Y., Kim, W. J., & Yi, S. C. (2012). Optimization of catalyst ink composition for the preparation of a membrane electrode assembly in a proton exchange membrane fuel cell using the decal transfer. International Journal of Hydrogen Energy, 37, 18446–18454.CrossRefGoogle Scholar
  17. 17.
    Saha, M. S., Paul, D. K., Peppley, B. A., & Karan, K. (2010). Fabrication of catalyst-coated membrane by modified decal transfer technique. Electrochemistry Communications, 12, 410–413.CrossRefGoogle Scholar
  18. 18.
    Yoon, Y. J., Kim, T. H., Kim, S. U., Yu, D. M., & Hong, Y. T. (2011). Low temperature decal transfer method for hydrocarbon membrane based membrane electrode assemblies in polymer electrolyte membrane fuel cells. Journal of Power Sources, 196, 9800–9809.CrossRefGoogle Scholar
  19. 19.
    Mehmood, A., & Ha, H. Y. (2012). An efficient decal transfer method using a roll-press to fabricate membrane electrode assemblies for direct methanol fuel cells. International Journal of Hydrogen Energy, 37, 18463–18470.CrossRefGoogle Scholar
  20. 20.
    Tang, H., Qi, Z., Ramani, M., & Elter, J. F. (2006). PEM fuel cell cathode carbon corrosion due to the formation of air/fuel boundary at the anode. Journal of Power Sources, 158, 1306–1312.CrossRefGoogle Scholar
  21. 21.
    Lim, K. H., Oh, H.-S., Jang, S.-E., Ko, Y.-J., Kim, H.-J., & Kim, H. (2009). Effect of operating conditions on carbon corrosion in polymer electrolyte membrane fuel cells. Journal of Power Sources, 193, 575–579.CrossRefGoogle Scholar
  22. 22.
    Maass, S., Finsterwalder, F., Frank, G., Hartmann, R., & Merten, C. (2008). Carbon support oxidation in PEM fuel cell cathodes. Journal of Power Sources, 176, 444–451.CrossRefGoogle Scholar
  23. 23.
    Jordan, L., Shukla, A., Behrsing, T., Avery, N., Muddle, B., & Forsyth, M. (2000). Diffusion layer parameters influencing optimal fuel cell performance. Journal of Power Sources, 86, 250–254.CrossRefGoogle Scholar
  24. 24.
    Song, S., Zhang, H., Ma, X., Shao, Z. G., Zhang, Y., & Yi, B. (2006). Bifunctional oxygen electrode with corrosion-resistive gas diffusion layer for unitized regenerative fuel cell. Electrochemistry Communications, 8, 399–405.CrossRefGoogle Scholar
  25. 25.
    Litster, S., & McLean, G. (2004). PEM fuel cell electrodes. Journal of Power Sources, 130, 61–76.CrossRefGoogle Scholar
  26. 26.
    Chang, I., Woo, S., Lee, M. H., Shim, J. H., Piao, Y., & Cha, S. W. (2013). Characterization of porous Pt films deposited via sputtering. Applied Surface Science, 282, 463–466.CrossRefGoogle Scholar
  27. 27.
    Park, T., Lee, Y. H., Cho, G. Y., Ji, S., Park, J., Chang, I., et al. (2015). Effect of the thickness of sputtered gadolinia-doped ceria as a cathodic interlayer in solid oxide fuel cells. Thin Solid Films, 584, 120–124.CrossRefGoogle Scholar
  28. 28.
    Park, T., Cho, G. Y., Lee, Y. H., Tanveer, W. H., Yu, W., Lee, Y., et al. (2016). Effect of anode morphology on the performance of thin film solid oxide fuel cell with PEALD YSZ electrolyte. International Journal of Hydrogen Energy, 41, 9638–9643.CrossRefGoogle Scholar
  29. 29.
    Hassan, H. B. (2009). Electrodeposited Pt and Pt-Sn nanoparticles on Ti as anodes for direct methanol fuel cells. Journal of Fuel Chemistry and Technology, 37, 346–354.CrossRefGoogle Scholar
  30. 30.
    O’hayre, R., Cha, S. W., Collela, W., & Prinz, F. B. (2016). Fuel cell fundamentals (2nd ed., pp. 71–98). New York: Wiley.CrossRefGoogle Scholar
  31. 31.
    Yuan, X., Wang, H., ColinSun, J., & Zhang, J. (2007). AC impedance technique in PEM fuel cell diagnosis—A review. International Journal of Hydrogen Energy, 32, 4365–4380.CrossRefGoogle Scholar
  32. 32.
    Zhiani, M., & Majidi, S. (2013). Effect of MEA conditioning on PEMFC performance and EIS response under steady state condition. International Journal of Hydrogen Energy, 38, 9819–9825.CrossRefGoogle Scholar
  33. 33.
    Ahn, C. Y., Cheon, J. Y., Joo, S. H., & Kim, J. (2013). Effects of ionomer content on Pt catalyst/ordered mesoporous carbon support in polymer electrolyte membrane fuel cells. Journal of Power Sources, 222, 477–482.CrossRefGoogle Scholar
  34. 34.
    Lai, C., Lin, J., Hsueh, K., Hwang, C., Tsay, K., Tsai, L., et al. (2007). On the electrochemical impedance spectroscopy of direct methanol fuel cell. International Journal of Hydrogen Energy, 32, 4381–4388.CrossRefGoogle Scholar
  35. 35.
    Park, T., Chang, I., Jung, J. H., Lee, H. B., Ko, S. H., O’Hayre, R., et al. (2017). Effect of assembly pressure on the performance of a bendable polymer electrolyte fuel cell based on a silver nanowire current collector. Energy., 134, 412–419.CrossRefGoogle Scholar

Copyright information

© Korean Society for Precision Engineering 2019

Authors and Affiliations

  1. 1.Fuel Cell Research CenterKorea Institute of Science and Technology (KIST)SeoulRepublic of Korea
  2. 2.University of Science Technology (UST)DaejeonRepublic of Korea
  3. 3.School of Mechanical EngineeringSoongsil UniversitySeoulRepublic of Korea
  4. 4.KHU-KIST Department of Converging Science and TechnologyKyung Hee UniversitySeoulRepublic of Korea
  5. 5.Division of Energy and Environment Technology, KIST SchoolKorea University of Science and TechnologySeoulRepublic of Korea

Personalised recommendations