Effect of Laser-derived Surface Re-melting of YSZ Electrolyte on Performance of Solid Oxide Fuel Cells

  • Hong Yi Kenneth Tan
  • Jong Dae Baek
  • Chen-Nan Sun
  • Jun Wei
  • Seong Hyuk LeeEmail author
  • Pei-Chen SuEmail author
Regular Paper


A simple and effective technique to reduce the overall fuel cell polarization resistance was introduced on a conventionally sintered YSZ electrolyte by creating a hybrid microstructure using low-intensity CO2 laser scanning methods. After laser modification of the YSZ electrolyte surface on the cathode side, the overall polarization resistance was reduced from 513 to 124 Ω cm2, and the maximum power density was increased by 28% from 1.86 to 2.38 mW/cm2 at 450 °C. This improvement was due to the enhanced surface kinetics by higher grain boundary density on the YSZ surface from recrystallization after laser scanning.


Solid oxide fuel cell CO2 laser Yttria-stabilized zirconia (YSZ) Cathode polarization 



The authors would like to acknowledge SIMTech-NTU Additive Manufacturing Joint Laboratory for funding this project. Also, this research was supported by the Chung-Ang University Research Grants in 2016.

Compliance with Ethical Standards

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.


  1. 1.
    Fergus, J. W. (2006). Electrolytes for solid oxide fuel cells. Journal of Power Sources, 162(1), 30–40.CrossRefGoogle Scholar
  2. 2.
    Singhal, S. C. (2000). Advances in solid oxide fuel cell technology. Solid State Ion, 135(1–4), 305–313.CrossRefGoogle Scholar
  3. 3.
    Badwal, S. P. S., & Foger, K. (1996). Solid oxide electrolyte fuel cell review. Ceramics International, 22, 257–265.CrossRefGoogle Scholar
  4. 4.
    Brett, D. J., Atkinson, A., Brandon, N. P., & Skinner, S. J. (2008). Intermediate temperature solid oxide fuel cells. Chemical Society Reviews, 37(8), 1568–1578.CrossRefGoogle Scholar
  5. 5.
    Minh, N. Q. (1993). Ceramic fuel cells. Journal of the American Ceramic Society, 76(3), 563–588.CrossRefGoogle Scholar
  6. 6.
    Su, P. C., Chao, C. C., Shim, J. H., Fasching, R., & Prinz, F. B. (2008). Solid oxide fuel cell with corrugated thin film electrolyte. Nano Letters, 8(8), 2289–2292.CrossRefGoogle Scholar
  7. 7.
    Peters, C., Weber, A., Butz, B., Gerthsen, D., & Ivers-Tiffée, E. (2009). Grain-size effects in YSZ thin-film electrolytes. Journal of the American Ceramic Society, 92(9), 2017–2024.CrossRefGoogle Scholar
  8. 8.
    Han, M., Tang, X., Yin, H., & Peng, S. (2007). Fabrication, microstructure and properties of a YSZ electrolyte for SOFCs. Journal of Power Sources, 165(2), 757–763.CrossRefGoogle Scholar
  9. 9.
    Knöner, G., Reimann, K., Röwer, R., Södervall, U., & Schaefer, H. E. (2003). Enhanced oxygen diffusivity in interfaces of nanocrystalline ZrO2· Y2O3. Proceedings of the National academy of Sciences of the United States of America, 100(7), 3870–3873.CrossRefGoogle Scholar
  10. 10.
    Shim, J. H., Park, J. S., Holme, T. P., Crabb, K., Lee, W., Kim, Y. B., et al. (2012). Enhanced oxygen exchange and incorporation at surface grain boundaries on an oxide ion conductor. Acta Materialia, 60(1), 1–7.CrossRefGoogle Scholar
  11. 11.
    Joo, J. H., & Choi, G. M. (2006). Electrical conductivity of YSZ film grown by pulsed laser deposition. Solid State Ion., 177(11–12), 1053–1057.CrossRefGoogle Scholar
  12. 12.
    Brahim, C., Ringuedé, A., Cassir, M., Putkonen, M., & Niinistö, L. (2007). Electrical properties of thin yttria-stabilized zirconia overlayers produced by atomic layer deposition for solid oxide fuel cell applications. Applied Surface Science, 253(8), 3962–3968.CrossRefGoogle Scholar
  13. 13.
    Morks, M. F., Berndt, C. C., Durandet, Y., Brandt, M., & Wang, J. (2010). Microscopic observation of laser glazed yttria-stabilized zirconia coatings. Applied Surface Science, 256(21), 6213–6218.CrossRefGoogle Scholar
  14. 14.
    Ghasemi, R., Shoja-Razavi, R., Mozafarinia, R., & Jamali, H. (2013). Laser glazing of plasma-sprayed nanostructured yttria stabilized zirconia thermal barrier coatings. Ceramics International, 39(8), 9483–9490.CrossRefGoogle Scholar
  15. 15.
    Liu, Q., Song, B., & Liao, H. (2014). Microstructure study on selective laser melting yttria stabilized zirconia ceramic with near IR fiber laser. Rapid Prototyping J., 20(5), 346–354.CrossRefGoogle Scholar
  16. 16.
    Sholklapper, T. Z., Kurokawa, H., Jacobson, C. P., Visco, S. J., & De Jonghe, L. C. (2007). Nanostructured solid oxide fuel cell electrodes. Nano Letters, 7(7), 2136–2141.CrossRefGoogle Scholar
  17. 17.
    Lee, S., Miller, N., Staruch, M., Gerdes, K., Jain, M., & Manivannan, A. (2011). Pr0.6Sr0.4CoO3− δ electrocatalyst for solid oxide fuel cell cathode introduced via infiltration. Electrochimica Acta, 56(27), 9904–9909.CrossRefGoogle Scholar
  18. 18.
    Lee, K. T., & Wachsman, E. D. (2014). Role of nanostructures on SOFC performance at reduced temperatures. MRS Bulletin, 39(9), 783–791.CrossRefGoogle Scholar

Copyright information

© Korean Society for Precision Engineering 2019

Authors and Affiliations

  • Hong Yi Kenneth Tan
    • 1
    • 2
  • Jong Dae Baek
    • 2
    • 5
  • Chen-Nan Sun
    • 1
    • 3
  • Jun Wei
    • 1
    • 3
  • Seong Hyuk Lee
    • 4
    Email author
  • Pei-Chen Su
    • 1
    • 2
    Email author
  1. 1.SIMTech-NTU Joint Laboratory (3D Additive Manufacturing)Nanyang Technological UniversitySingaporeSingapore
  2. 2.School of Mechanical & Aerospace EngineeringNanyang Technological UniversitySingaporeSingapore
  3. 3.Singapore Institute of Manufacturing TechnologySingaporeSingapore
  4. 4.School of Mechanical EngineeringChung-Ang UniversitySeoulSouth Korea
  5. 5.Department of Automotive EngineeringYeungnam UniversityGyeongsanSouth Korea

Personalised recommendations