Life Prediction Method for Thermal Barrier Coating of High-Efficiency Eco-Friendly Combined Cycle Power Plant

  • Hyunwoo Song
  • Jeong-Min Lee
  • Yongseok Kim
  • Sungho Yang
  • Soo Park
  • Jae-Mean Koo
  • Chang-Sung SeokEmail author
Regular Paper


Recently, because global warming has become increasingly severe, CO2 emission regulations have become strict. Accordingly, there is an increasing demand for a combined cycle power plant that is eco-friendly and capable of high-efficiency generation using natural gas, which has a relatively low carbon content. In order to improve the efficiency of a combined cycle power plant by increasing the operating temperature, the durability of the hot-section components must be secured. Therefore, thermal barrier coating (TBC) technology has been applied. The TBC is damaged by thermal fatigue during operation. The delamination of the TBC could lead to core component damage. Therefore, studies on the prediction of TBC durability should be conducted before increasing the operating temperature. In particular, because the thermal fatigue life is affected by changes in the TBC structure, there is a demand for a durability evaluation technique that takes this into consideration. In this study, a thermal fatigue analysis was performed that considered the growth of the oxide layer, and a thermal fatigue life prediction equation for the TBC was derived based on the results. The thermal fatigue life was predicted, according to the change in the TBC structure, using the life prediction equation, and it was verified by comparing it with the thermal fatigue test results.


Combined cycle power plant Eco-friendly High efficiency Life prediction Thermal barrier coating (TBC) 

List of Symbols


Stress amplitude


Mean stress


Ultimate Strength


Equivalent stress amplitude


Thermal fatigue life



This work was supported by the National Research Foundation of Korea (NRF) Grant funded by the Korea government (MSIP) (no. 2015R1A2A1A10055230).


  1. 1.
    Elizabarashvili, M., Elizbarashvili, E., Tatishvili, M., Elizbarashvili, S., Meskhia, R., Kutaladze, N., et al. (2017). Georgian climate change under global warming conditions. Annals of Agrarian Science, 15, 17–25.CrossRefGoogle Scholar
  2. 2.
    Rovere, A., Raymo, M. E., Vacchi, M., Lorscheid, T., Stocchi, P., Gómez-Pujol, L., et al. (2016). The analysis of last interglacial (MIS 5e) relative sea-level indicators: Reconstructing sea-level in a warmer world. Earth-Science Reviews, 159, 404–427.CrossRefGoogle Scholar
  3. 3.
    Miranda, L. A., Chalde, T., Elisio, M., & Strüssmann, C. A. (2013). Effects of global warming on fish reproductive endocrine axis, with special emphasis in pejerrey odontesthes bonariensis. General and Comparative Endocrinology, 192, 45–54.CrossRefGoogle Scholar
  4. 4.
    Almer, C., & Winkler, R. (2017). Analyzing the effectiveness of international environmental policies: The case of the Kyoto protocol. Journal of Environmental Economics and Management, 82, 125–151.CrossRefGoogle Scholar
  5. 5.
    Kim, Y., Lee, J. M., Song, H., Han, K., Koo, J. M., Lee, Y. Z., et al. (2017). TBC delamination life prediction by stress-based delamination map. International Journal of Precision Engineering and Manufacturing-Green Technology, 4(1), 67–72.CrossRefGoogle Scholar
  6. 6.
    He, B., Huang, S., & Wang, J. (2015). Product low-carbon design using dynamic programming algorithm. International Journal of Precision Engineering and Manufacturing-Green Technology, 2(1), 37–42.CrossRefGoogle Scholar
  7. 7.
    Lee, J. M., Wee, S. W., Yun, J., Song, H., Kim, Y., Koo, J. M., et al. (2018). Life prediction of IN738LC considering creep damage under low cycle fatigue. International Journal of Precision Engineering and Manufacturing-Green Technology, 5(2), 311–316.CrossRefGoogle Scholar
  8. 8.
    Kuo, T. C., Huang, M. L., Hsu, C. W., Lin, C. J., Hsieh, C. C., & Chu, C. H. (2015). Application of data quality indicator of carbon footprint and water footprint. International Journal of Precision Engineering and Manufacturing-Green Technology, 2(1), 43–50.CrossRefGoogle Scholar
  9. 9.
    Kim, D. J., Shin, I. H., Koo, J. M., Seok, C. S., & Kim, M. Y. (2009). Evaluation on the delamination life of isothermally aged plasma sprayed thermal barrier coating. Transactions of the Korean Society of Mechanical Engineers A, 33(2), 162–168.CrossRefGoogle Scholar
  10. 10.
    Ma, K., & Schoenung, J. M. (2011). Isothermal oxidation behavior of cryomilled NiCrAlY bond coat: Homogeneity and growth rate of TGO. Surface & Coatings Technology, 205, 5178–5185.CrossRefGoogle Scholar
  11. 11.
    Clarke, D. R., Oechsner, M., & Padture, N. P. (2012). Thermal-barrier coatings for more efficient gas-turbine engines. Materials Research Society Bulletin, 37(10), 891–897.CrossRefGoogle Scholar
  12. 12.
    Yoon, W. N., Kang, M. S., Jung, N. K., Kim, J. S., & Choi, B. H. (2012). Failure analysis of the defect-induced blade damage of a compressor in the gas turbine of a cogeneration plant. International Journal of Precision Engineering and Manufacturing, 13(5), 717–722.CrossRefGoogle Scholar
  13. 13.
    Cha, Y. H., Kim, J. Y., Choi, S. H., Kim, S. H., Kwak, N. S., & Park, S. K. (2012). Integrity evaluation of coatings for refreshing cycles extension of the 1st stage bucket on gas turbine. International Journal of Precision Engineering and Manufacturing, 13(9), 1555–1561.CrossRefGoogle Scholar
  14. 14.
    Schmidt, C., Li, W., Thiede, S., Kara, S., & Herrmann, C. (2015). A methodology for customized prediction of energy consumption in manufacturing industries. International Journal of Precision Engineering and Manufacturing-Green Technology, 2(2), 163–172.CrossRefGoogle Scholar
  15. 15.
    Kim, D. J., Shin, I. H., Koo, J. M., Seok, C. S., & Lee, T. W. (2010). Failure mechanisms of coin-type plasma-sprayed thermal barrier coatings with thermal fatigue. Surface & Coatings Technology, 205, S451–S458.CrossRefGoogle Scholar
  16. 16.
    Ranjbar-Far, M., Absi, J., Mariaux, G., & Dubois, F. (2010). Simulation of the effect of material properties and interface roughness on the stress distribution in thermal barrier coatings using finite element method. Materials and Design, 31, 772–781.CrossRefGoogle Scholar
  17. 17.
    Koo, J. M., & Seok, C. S. (2014). Design technique for improving the durability of top coating for thermal barrier of gas turbine. Journal of the Korean Society for Precision Engineering, 31(1), 15–20.CrossRefGoogle Scholar
  18. 18.
    Shin, I. H., Koo, J. M., Seok, C. S., Yang, S. H., Lee, T. W., & Kim, B. S. (2011). Estimation of spallation life of thermal barrier coating of gas turbine blade by thermal fatigue test. Surface & Coatings Technology, 205, S157–S160.CrossRefGoogle Scholar
  19. 19.
    Seiler, P., Bäker, M., & Rösler, J. (2013). Multi-scale failure mechanisms of thermal barrier coating systems. Computational Materials Science, 80, 27–34.CrossRefGoogle Scholar
  20. 20.
    Song, H., Lee, J. M., Kim, Y., Oh, C. S., Han, K. C., Lee, Y. Z., et al. (2014). Evaluation of effect on thermal fatigue life considering TGO growth. Journal of the Korean Society for Precision Engineering, 31(12), 1155–1159.CrossRefGoogle Scholar
  21. 21.
    Kim, Y., Lee, D., Lee, J. M., Song, H., Kim, S. H., Koo, J. M., et al. (2014). A study on thermal fatigue life variation according to thermal exposure time. Applied Mechanics and Materials, 598, 276–280.CrossRefGoogle Scholar
  22. 22.
    Song, H., Kim, Y., Lee, J. M., Yun, J., Kim, D. J., Koo, J. M., et al. (2016). Life prediction of thermal barrier coating considering degradation and thermal fatigue. Journal of Precision Engineering and Manufacturing, 17(2), 241–245.CrossRefGoogle Scholar
  23. 23.
    Pathak, H., Singh, A., Singh, I. V., & Yadav, S. K. (2015). Fatigue crack growth simulations of 3-D linear elastic cracks under thermal load by XFEM. Frontiers of Structural and Civil Engineering, 9(4), 359–382.CrossRefGoogle Scholar
  24. 24.
    Wang, L., Li, D. C., Yang, J. S., Shao, F., Zhong, X. H., Zhao, H. Y., et al. (2016). Modeling of thermal properties and failure of thermal barrier coatings with the use of finite element methods: A review. Journal of the European Ceramic Society, 36, 1313–1331.CrossRefGoogle Scholar
  25. 25.
    Zhu, W., Zhang, Z. B., Yang, L., Zhou, Y. C., & Wei, Y. G. (2018). Spallation of thermal barrier coatings with real thermally grown oxide morphology under thermal stress. Materials and Design, 146, 180–193.CrossRefGoogle Scholar
  26. 26.
    Schwarzer, J., Löhe, D., & Vöhringer, O. (2004). Influence of the TGO creep behavior on delamination stress development in thermal barrier coating systems. Materials Science and Engineering A, 387–389, 692–695.CrossRefGoogle Scholar
  27. 27.
    Ng, H. W., & Gan, Z. (2005). A finite element analysis technique for prediction as-sprayed residual stresses generated by the plasma spray coating process. Finite Elements in Analysis and Design, 41, 1235–1254.CrossRefGoogle Scholar
  28. 28.
    Liu, A., & Wei, Y. (2003). Finite element analysis of anti-spallation thermal barrier coatings. Surface & Coatings Technology, 165, 154–162.CrossRefGoogle Scholar
  29. 29.
    Kyaw, S., Jones, A., & Hyde, T. (2013). Predicting failure within TBC system: Finite element simulation of stress within TBC system as affected by sintering of APS TBC, geometry of substrate and creep of TGO. Engineering Failure Analysis, 27, 150–164.CrossRefGoogle Scholar
  30. 30.
    Evans, A. G., He, M. Y., Suzuki, A., Gigliotti, M., Hazel, B., & Pollock, T. M. (2009). A mechanism governing oxidation-assisted low-cycle fatigue of superalloys. Acta Materialila, 57, 2969–2983.CrossRefGoogle Scholar
  31. 31.
    Tomimatsu, T., Zhu, S., & Kagawa, Y. (2003). Effect of thermal exposure on stress distribution in TGO Layer of EB-PVD TBC. Acta Materialia, 51, 2397–2405.CrossRefGoogle Scholar
  32. 32.
    Wang, L., Yang, J. S., Ni, J. X., Liu, C. G., Zhong, X. H., Shao, F., et al. (2016). Influence of cracks in APS-TBCs on stress around TGO during thermal cycling: A numerical simulation study. Surface & Coatings Technology, 285, 98–112.CrossRefGoogle Scholar

Copyright information

© Korean Society for Precision Engineering 2019

Authors and Affiliations

  • Hyunwoo Song
    • 1
  • Jeong-Min Lee
    • 1
  • Yongseok Kim
    • 2
  • Sungho Yang
    • 3
  • Soo Park
    • 1
  • Jae-Mean Koo
    • 1
  • Chang-Sung Seok
    • 1
    Email author
  1. 1.Department of Mechanical EngineeringSungkyunkwan UniversitySuwon-siSouth Korea
  2. 2.Railroad Type Approval TeamKorea Railroad Research InstituteUiwang-siSouth Korea
  3. 3.Technology TeamKPS Gas Turbine Technology Service CenterIncheonSouth Korea

Personalised recommendations