Advertisement

Significant Adhesion Enhancement of Bioinspired Dry Adhesives by Simple Thermal Treatment

  • Minho Seong
  • Joosung Lee
  • Insol Hwang
  • Hoon Eui JeongEmail author
Regular Paper
  • 114 Downloads

Abstract

Bioinspired dry adhesives with micropillar arrays can be harnessed for precise and environment-friendly manufacturing. This study presents a simple and robust approach for developing synthetic dry adhesives with significantly enhanced adhesion strength without sophisticated structural modification or chemical surface treatment. We show that when dry adhesives with micropillar arrays are annealed at slightly elevated temperatures of 150–200 °C, their adhesion strengths are remarkably enhanced (maximum normal adhesion: 50.0 N cm−2) compared to those that are not treated thermally (normal adhesion: 17.6 N cm−2). The enhanced adhesion levels obtained by simple annealing surpass those of previously reported dry adhesives having nanoscale hairs with high aspect ratios or mushroom-like pillars with large tips. Experimental investigations regarding the chemical structure, surface roughness, surface energy, and elastic modulus of the dry adhesive samples indicate that the enhanced adhesion originates from the annealing-induced enhancement of the adhesive’s elastic modulus

Keywords

Annealing Dry adhesion Elastic modulus Surface energy Thermal treatment 

Notes

Acknowledgement

This work was supported by the Mid-career Researchers Supporting Program through the National Research Foundation of Korea (NRF) (2016R1A2B2014044) and the Research Grant funded by the Ulsan National Institute of Science and Technology (1.170018) and the Fire Fighting Technology Research and Development Program funded by the Ministry of Public Safety and Security (MPSS-Fire safety-2015-72). On behalf of all authors, the corresponding author states that there is no conflict of interest.

Supplementary material

40684_2019_62_MOESM1_ESM.docx (2.3 mb)
Supplementary material 1 (DOCX 2348 kb)

References

  1. 1.
    Autumn, K., Sitti, M., Liang, Y. A., Peattie, A. M., Hansen, W. R., Sponberg, S., et al. (2002). Evidence for Van Der Waals Adhesion in Gecko Setae. Proceedings of the National Academy of Sciences, 99(19), 12252–12256.CrossRefGoogle Scholar
  2. 2.
    Geim, A. K., Dubonos, S. V., Grigorieva, I. V., Novoselov, K. S., Zhukov, A. A., & Shapoval, S. Y. (2003). Microfabricated adhesive mimicking gecko foot-hair. Nature Materials, 2(7), 461–463.CrossRefGoogle Scholar
  3. 3.
    Sitti, M., & Fearing, R. S. (2003). Synthetic gecko foot-hair micro/nano-structures as dry adhesives. Journal of Adhesion Science and Technology, 17(8), 1055–1073.CrossRefGoogle Scholar
  4. 4.
    Boesel, L. F., Greiner, C., Arzt, E., & del Campo, A. (2010). Gecko-inspired surfaces: a path to strong and reversible dry adhesives. Advanced Materials, 22(19), 2125–2137.CrossRefGoogle Scholar
  5. 5.
    Kwak, M. K., Pang, C., Jeong, H.-E., Kim, H.-N., Yoon, H., Jung, H.-S., et al. (2011). Towards the next level of bioinspired dry adhesives: new designs and applications. Advanced Functional Materials, 21(19), 3606–3616.CrossRefGoogle Scholar
  6. 6.
    Qu, L., Dai, L., Stone, M., Xia, Z., & Wang, Z. L. (2008). Carbon nanotube arrays with strong shear binding-on and easy normal lifting-off. Science, 322(5899), 238–242.CrossRefGoogle Scholar
  7. 7.
    Northen, M. T., Greiner, C., Arzt, E., & Turner, K. L. (2008). A gecko-inspired reversible adhesive. Advanced Materials, 20(20), 3905–3909.CrossRefGoogle Scholar
  8. 8.
    Ho, A. Y. Y., Yeo, L. P., Lam, Y. C., & Rodríguez, I. (2011). Fabrication and analysis of gecko-inspired hierarchical polymer nanosetae. ACS Nano, 5(3), 1897–1906.CrossRefGoogle Scholar
  9. 9.
    Greiner, C., Arzt, E., & del Campo, A. (2009). Hierarchical gecko-like adhesives. Advanced Materials, 21(4), 479–482.CrossRefGoogle Scholar
  10. 10.
    Yi, H., Hwang, I., Sung, M., Lee, D., Kim, J.-H., Kang, S. M., et al. (2014). Bio-inspired adhesive systems for next-generation green manufacturing. International Journal of Precision Engineering and Manufacturing-Green Technology, 1(4), 347–351.CrossRefGoogle Scholar
  11. 11.
    Zhou, M., Tian, Y., Sameoto, D., Zhang, X., Meng, Y., & Wen, S. (2013). Controllable interfacial adhesion applied to transfer light and fragile objects by using gecko inspired mushroom-shaped pillar surface. ACS Applied Materials & Interfaces, 5(20), 10137–10144.CrossRefGoogle Scholar
  12. 12.
    Kang, S. M. (2016). Bioinspired design and fabrication of green-environmental dry adhesive with robust wide-tip shape. International Journal of Precision Engineering and Manufacturing-Green Technology, 3(2), 189–192.CrossRefGoogle Scholar
  13. 13.
    Ko, H., Seong, M., & Jeong, H. E. (2017). A micropatterned elastomeric surface with enhanced frictional properties under wet conditions and its application. Soft Matter, 13(45), 8419–8425.CrossRefGoogle Scholar
  14. 14.
    Sangbae, K., Spenko, M., Trujillo, S., Heyneman, B., Santos, D., & Cutkosky, M. R. (2008). Smooth vertical surface climbing with directional adhesion. IEEE Transactions on robotics, 24(1), 65–74.CrossRefGoogle Scholar
  15. 15.
    Santos, D., Heyneman, B., Kim, S., Esparza, N. and Cutkosky, M., “Gecko-inspired climbing behaviors on vertical and overhanging surfaces,” Proc. IEEE Int. Conf. Robot. Autom., pp. 1125-1131, 2008.Google Scholar
  16. 16.
    Han, I. H., Yi, H., Song, C. W., Jeong, H. E., & Lee, S. Y. (2017). A miniaturized wall-climbing segment robot inspired by caterpillar locomotion. Bioinspiration & Biomimetics, 12(4), 046003.CrossRefGoogle Scholar
  17. 17.
    Murphy, M. P., Kute, C., Mengüç, Y., Sitti, M., & Waalbot, I. L. (2010). Adhesion recovery and improved performance of a climbing robot using fibrillar adhesives. The International Journal of Robotics Research, 30(1), 118–133.CrossRefGoogle Scholar
  18. 18.
    Ko, H., Yi, H., & Jeong, H. E. (2017). Wall and ceiling climbing quadruped robot with superior water repellency manufactured using 3d printing (Uniclimb). International Journal of Precision Engineering and Manufacturing-Green Technology, 4(3), 273–280.CrossRefGoogle Scholar
  19. 19.
    Bae, W. G., Kim, D., Kwak, M. K., Ha, L., Kang, S. M., & Suh, K. Y. (2013). Enhanced skin adhesive patch with modulus-tunable composite micropillars. Advanced Healthcare Materials, 2(1), 109–113.CrossRefGoogle Scholar
  20. 20.
    Kim, T., Park, J., Sohn, J., Cho, D., & Jeon, S. (2016). Bioinspired, highly stretchable, and conductive dry adhesives based on 1d-2d hybrid carbon nanocomposites for all-in-one ECG electrodes. ACS Nano, 10(4), 4770–4778.CrossRefGoogle Scholar
  21. 21.
    Wang, H., Pastorin, G., & Lee, C. (2016). Toward self-powered wearable adhesive skin patch with bendable microneedle array for transdermal drug delivery. Advanced Science, 3(9), 1500441.CrossRefGoogle Scholar
  22. 22.
    Stauffer, F., Thielen, M., Sauter, C., Chardonnens, S., Bachmann, S., Tybrandt, K., et al. (2018). Skin conformal polymer electrodes for clinical ECG and EEG recordings. Advanced Healthcare Material, 7(7), 1700994.CrossRefGoogle Scholar
  23. 23.
    Hwang, I., Kim, H. N., Seong, M., Lee, S. H., Kang, M., Yi, H., et al. (2018). Multifunctional smart skin adhesive patches for advanced health care. Advanced Healthcare Materials, 7, 1800275.CrossRefGoogle Scholar
  24. 24.
    del Campo, A., & Arzt, E. (2007). Design parameters and current fabrication approaches for developing bioinspired dry adhesives. Macromolecular Bioscience, 7(2), 118–127.CrossRefGoogle Scholar
  25. 25.
    Jeong, H. E., Lee, J.-K., Kim, H. N., Moon, S. H., & Suh, K. Y. (2009). A nontransferring dry adhesive with hierarchical polymer nanohairs. Proceedings of the National Academy of Sciences, 106(14), 5639–5644.CrossRefGoogle Scholar
  26. 26.
    Barreau, V., Hensel, R., Guimard, N. K., Ghatak, A., McMeeking, R. M., & Arzt, E. (2016). Fibrillar elastomeric micropatterns create tunable adhesion even to rough surfaces. Advanced Functional Materials, 26(26), 4687–4694.CrossRefGoogle Scholar
  27. 27.
    Wang, Z. (2018). Slanted functional gradient micropillars for optimal bioinspired dry adhesion. ACS Nano, 12(2), 1273–1284.CrossRefGoogle Scholar
  28. 28.
    Jeong, H. E., Lee, S. H., Kim, P., & Suh, K. Y. (2006). Stretched polymer nanohairs by nanodrawing. Nano Letters, 6(7), 1508–1513.CrossRefGoogle Scholar
  29. 29.
    Zhang, Y., Lo, C.-W., Taylor, J. A., & Yang, S. (2006). Replica molding of high-aspect-ratio polymeric nanopillar arrays with high fidelity. Langmuir, 22(20), 8595–8601.CrossRefGoogle Scholar
  30. 30.
    Greiner, C., del Campo, A., & Arzt, E. (2007). Adhesion of bioinspired micropatterned surfaces: effects of pillar radius, aspect ratio, and preload. Langmuir, 23(7), 3495–3502.CrossRefGoogle Scholar
  31. 31.
    Murphy, M. P., Kim, S., & Sitti, M. (2009). Enhanced adhesion by gecko-inspired hierarchical fibrillar adhesives. ACS Applied Materials & Interfaces, 1(4), 849–855.CrossRefGoogle Scholar
  32. 32.
    Kim, D. S., Lee, H. S., Lee, J., Kim, S., Lee, K.-H., Moon, W., et al. (2006). Replication of High-aspect-ratio nanopillar array for biomimetic gecko foot-hair prototype by UV nano embossing with anodic aluminum oxide mold. Microsystem Technologies, 13(5–6), 601–606.Google Scholar
  33. 33.
    Kim, T.-I., Jeong, H. E., Suh, K. Y., & Lee, H. H. (2009). Stooped nanohairs: geometry-controllable, unidirectional, reversible, and robust gecko-like dry adhesive. Advanced Materials, 21(22), 2276–2281.CrossRefGoogle Scholar
  34. 34.
    Dinesh, D., & Yang, S. (2010). Stability of high-aspect-ratio micropillar arrays against adhesive and capillary forces. Accounts of Chemical Research, 43(8), 1080–1091.CrossRefGoogle Scholar
  35. 35.
    Jeong, H. E., & Suh, K. Y. (2009). Nanohairs and nanotubes: efficient structural elements for gecko-inspired artificial dry adhesives. Nano Today, 4(4), 335–346.CrossRefGoogle Scholar
  36. 36.
    Lee, J., Bush, B., Maboudian, R., & Fearing, R. S. (2009). Gecko-inspired combined lamellar and nanofibrillar array for adhesion on nonplanar surface. Langmuir, 25(21), 12449–12453.CrossRefGoogle Scholar
  37. 37.
    Yi, H., Seong, M., Sun, K., Hwang, I., Lee, K., Cha, C., et al. (2018). Wet-responsive, reconfigurable, and biocompatible hydrogel adhesive films for transfer printing of nanomembranes. Advanced Functional Materials, 28(18), 1706498.CrossRefGoogle Scholar
  38. 38.
    Wang, D., Zhao, A., Jiang, R., Li, D., Zhang, M., Gan, Z., et al. (2012). Surface properties of bionic micro-pillar arrays with various shapes of tips. Applied Surface Science, 259, 93–98.CrossRefGoogle Scholar
  39. 39.
    Park, H.-H., Seong, M., Sun, K., Ko, H., Kim, S. M., & Jeong, H. E. (2017). Flexible and shape-reconfigurable hydrogel interlocking adhesives for high adhesion in wet environments based on anisotropic swelling of hydrogel microstructures. ACS Macro Lett., 6(12), 1325–1330.CrossRefGoogle Scholar
  40. 40.
    del Campo, A., Greiner, C., Álvarez, I., & Arzt, E. (2007). Patterned surfaces with pillars with controlled 3d tip geometry mimicking bioattachment devices. Advanced Materials, 19(15), 1973–1977.CrossRefGoogle Scholar
  41. 41.
    Hu, H., Tian, H., Shao, J., Wang, Y., Li, X., Tian, Y., et al. (2017). Friction contribution to bioinspired mushroom-shaped dry adhesives. Advanced Materials Interfaces, 4(9), 1700016.CrossRefGoogle Scholar
  42. 42.
    Yi, H., Kang, M., Kwak, M. K., & Jeong, H. E. (2016). Simple and reliable fabrication of bioinspired mushroom-shaped micropillars with precisely controlled tip geometries. ACS Applied Materials & Interfaces, 8(34), 22671–22678.CrossRefGoogle Scholar
  43. 43.
    Hu, H., Tian, H., Shao, J., Li, X., Wang, Y., Wang, Y., et al. (2017). Discretely supported dry adhesive film inspired by biological bending behavior for enhanced performance on a rough surface. ACS Applied Materials & Interfaces, 9(8), 7752–7760.CrossRefGoogle Scholar
  44. 44.
    Cho, Y., Kim, G., Cho, Y., Lee, S. Y., Minsky, H., Turner, K. T., et al. (2015). Orthogonal control of stability and tunable dry adhesion by tailoring the shape of tapered nanopillar arrays. Advanced Materials, 27(47), 7788–7793.CrossRefGoogle Scholar
  45. 45.
    Raut, H. K., Baji, A., Hariri, H. H., Parveen, H., Soh, G. S., Low, H. Y., et al. (2018). Gecko-Inspired dry adhesive based on micro-nanoscale hierarchical arrays for application in climbing devices. ACS Applied Materials & Interfaces, 10(1), 1288–1296.CrossRefGoogle Scholar
  46. 46.
    Seong, M., Jeong, C., Yi, H., Park, H.-H., Bae, W.-G., Park, Y.-B., et al. (2017). Adhesion of bioinspired nanocomposite microstructure at high temperatures. Applied Surface Science, 413, 275–283.CrossRefGoogle Scholar
  47. 47.
    Owens, D. K., & Wendt, R. C. (1969). Estimation of the surface free energy of polymers. Journal of Applied Polymer Science, 13(8), 1741–1747.CrossRefGoogle Scholar
  48. 48.
    Camino, G., Lomakin, S. M., & Lazzari, M. (2001). Polydimethylsiloxane thermal degradation part 1. Kinetic aspects. Polymer, 42(6), 2395–2402.CrossRefGoogle Scholar
  49. 49.
    Simpson, T. R. E., Tabatabaian, Z., Jeynes, C., Parbhoo, B., & Keddie, J. L. (2004). Influence of interfaces on the rates of crosslinking in poly (dimethyl siloxane) coatings. Journal of Polymer Science Part A: Polymer Chemistry, 42(6), 1421–1431.CrossRefGoogle Scholar
  50. 50.
    Zhang, Q., Xu, J.-J., Liu, Y., & Chen, H.-Y. (2008). In-situ synthesis of poly(dimethylsiloxane)-gold nanoparticles composite films and its application in microfluidic systems. Lab on a Chip, 8(2), 352–357.CrossRefGoogle Scholar
  51. 51.
    Carbone, G., Pierro, E., & Gorb, S. N. (2011). Origin of the superior adhesive performance of mushroom-shaped microstructured surfaces. Soft Matter, 7(12), 5545–5552.CrossRefGoogle Scholar
  52. 52.
    Fernandez, V., & Khayet, M. (2015). Evaluation of the surface free energy of plant surfaces: toward standardizing the procedure. Frontiers in plant science, 6, 510.CrossRefGoogle Scholar
  53. 53.
    Kendall, K. (1971). The adhesion and surface energy of elastic solids. Journal of Physics D: Applied Physics, 4(8), 1186.CrossRefGoogle Scholar
  54. 54.
    Schneider, F., Fellner, T., Wilde, J., & Wallrabe, U. (2008). Mechanical properties of silicones for MEMS. Journal of Micromechanics and Microengineering, 18(6), 065008.CrossRefGoogle Scholar
  55. 55.
    Seghir, R., & Arscott, S. (2015). Extended PDMS stiffness range for flexible systems. Sensors and Actuators A: Physical, 230, 33–39.CrossRefGoogle Scholar
  56. 56.
    Chin, P., McCullough, R. L., & Wu, W.-L. (1997). An improved procedure for determining the work of adhesion for polymer-solid contact. Journal of Adhesion, 64(1–4), 145–160.CrossRefGoogle Scholar
  57. 57.
    Hejda, F., Solar, P., & Kousal, J. (2010). Surface free energy determination by contact angle measurements—A comparison of various approaches. WDS, 10, 25–30.Google Scholar

Copyright information

© Korean Society for Precision Engineering 2019

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringUlsan National Institute of Science and Technology (UNIST)UlsanRepublic of Korea

Personalised recommendations