Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Significant Adhesion Enhancement of Bioinspired Dry Adhesives by Simple Thermal Treatment

  • 362 Accesses


Bioinspired dry adhesives with micropillar arrays can be harnessed for precise and environment-friendly manufacturing. This study presents a simple and robust approach for developing synthetic dry adhesives with significantly enhanced adhesion strength without sophisticated structural modification or chemical surface treatment. We show that when dry adhesives with micropillar arrays are annealed at slightly elevated temperatures of 150–200 °C, their adhesion strengths are remarkably enhanced (maximum normal adhesion: 50.0 N cm−2) compared to those that are not treated thermally (normal adhesion: 17.6 N cm−2). The enhanced adhesion levels obtained by simple annealing surpass those of previously reported dry adhesives having nanoscale hairs with high aspect ratios or mushroom-like pillars with large tips. Experimental investigations regarding the chemical structure, surface roughness, surface energy, and elastic modulus of the dry adhesive samples indicate that the enhanced adhesion originates from the annealing-induced enhancement of the adhesive’s elastic modulus

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7


  1. 1.

    Autumn, K., Sitti, M., Liang, Y. A., Peattie, A. M., Hansen, W. R., Sponberg, S., et al. (2002). Evidence for Van Der Waals Adhesion in Gecko Setae. Proceedings of the National Academy of Sciences, 99(19), 12252–12256.

  2. 2.

    Geim, A. K., Dubonos, S. V., Grigorieva, I. V., Novoselov, K. S., Zhukov, A. A., & Shapoval, S. Y. (2003). Microfabricated adhesive mimicking gecko foot-hair. Nature Materials, 2(7), 461–463.

  3. 3.

    Sitti, M., & Fearing, R. S. (2003). Synthetic gecko foot-hair micro/nano-structures as dry adhesives. Journal of Adhesion Science and Technology, 17(8), 1055–1073.

  4. 4.

    Boesel, L. F., Greiner, C., Arzt, E., & del Campo, A. (2010). Gecko-inspired surfaces: a path to strong and reversible dry adhesives. Advanced Materials, 22(19), 2125–2137.

  5. 5.

    Kwak, M. K., Pang, C., Jeong, H.-E., Kim, H.-N., Yoon, H., Jung, H.-S., et al. (2011). Towards the next level of bioinspired dry adhesives: new designs and applications. Advanced Functional Materials, 21(19), 3606–3616.

  6. 6.

    Qu, L., Dai, L., Stone, M., Xia, Z., & Wang, Z. L. (2008). Carbon nanotube arrays with strong shear binding-on and easy normal lifting-off. Science, 322(5899), 238–242.

  7. 7.

    Northen, M. T., Greiner, C., Arzt, E., & Turner, K. L. (2008). A gecko-inspired reversible adhesive. Advanced Materials, 20(20), 3905–3909.

  8. 8.

    Ho, A. Y. Y., Yeo, L. P., Lam, Y. C., & Rodríguez, I. (2011). Fabrication and analysis of gecko-inspired hierarchical polymer nanosetae. ACS Nano, 5(3), 1897–1906.

  9. 9.

    Greiner, C., Arzt, E., & del Campo, A. (2009). Hierarchical gecko-like adhesives. Advanced Materials, 21(4), 479–482.

  10. 10.

    Yi, H., Hwang, I., Sung, M., Lee, D., Kim, J.-H., Kang, S. M., et al. (2014). Bio-inspired adhesive systems for next-generation green manufacturing. International Journal of Precision Engineering and Manufacturing-Green Technology, 1(4), 347–351.

  11. 11.

    Zhou, M., Tian, Y., Sameoto, D., Zhang, X., Meng, Y., & Wen, S. (2013). Controllable interfacial adhesion applied to transfer light and fragile objects by using gecko inspired mushroom-shaped pillar surface. ACS Applied Materials & Interfaces, 5(20), 10137–10144.

  12. 12.

    Kang, S. M. (2016). Bioinspired design and fabrication of green-environmental dry adhesive with robust wide-tip shape. International Journal of Precision Engineering and Manufacturing-Green Technology, 3(2), 189–192.

  13. 13.

    Ko, H., Seong, M., & Jeong, H. E. (2017). A micropatterned elastomeric surface with enhanced frictional properties under wet conditions and its application. Soft Matter, 13(45), 8419–8425.

  14. 14.

    Sangbae, K., Spenko, M., Trujillo, S., Heyneman, B., Santos, D., & Cutkosky, M. R. (2008). Smooth vertical surface climbing with directional adhesion. IEEE Transactions on robotics, 24(1), 65–74.

  15. 15.

    Santos, D., Heyneman, B., Kim, S., Esparza, N. and Cutkosky, M., “Gecko-inspired climbing behaviors on vertical and overhanging surfaces,” Proc. IEEE Int. Conf. Robot. Autom., pp. 1125-1131, 2008.

  16. 16.

    Han, I. H., Yi, H., Song, C. W., Jeong, H. E., & Lee, S. Y. (2017). A miniaturized wall-climbing segment robot inspired by caterpillar locomotion. Bioinspiration & Biomimetics, 12(4), 046003.

  17. 17.

    Murphy, M. P., Kute, C., Mengüç, Y., Sitti, M., & Waalbot, I. L. (2010). Adhesion recovery and improved performance of a climbing robot using fibrillar adhesives. The International Journal of Robotics Research, 30(1), 118–133.

  18. 18.

    Ko, H., Yi, H., & Jeong, H. E. (2017). Wall and ceiling climbing quadruped robot with superior water repellency manufactured using 3d printing (Uniclimb). International Journal of Precision Engineering and Manufacturing-Green Technology, 4(3), 273–280.

  19. 19.

    Bae, W. G., Kim, D., Kwak, M. K., Ha, L., Kang, S. M., & Suh, K. Y. (2013). Enhanced skin adhesive patch with modulus-tunable composite micropillars. Advanced Healthcare Materials, 2(1), 109–113.

  20. 20.

    Kim, T., Park, J., Sohn, J., Cho, D., & Jeon, S. (2016). Bioinspired, highly stretchable, and conductive dry adhesives based on 1d-2d hybrid carbon nanocomposites for all-in-one ECG electrodes. ACS Nano, 10(4), 4770–4778.

  21. 21.

    Wang, H., Pastorin, G., & Lee, C. (2016). Toward self-powered wearable adhesive skin patch with bendable microneedle array for transdermal drug delivery. Advanced Science, 3(9), 1500441.

  22. 22.

    Stauffer, F., Thielen, M., Sauter, C., Chardonnens, S., Bachmann, S., Tybrandt, K., et al. (2018). Skin conformal polymer electrodes for clinical ECG and EEG recordings. Advanced Healthcare Material, 7(7), 1700994.

  23. 23.

    Hwang, I., Kim, H. N., Seong, M., Lee, S. H., Kang, M., Yi, H., et al. (2018). Multifunctional smart skin adhesive patches for advanced health care. Advanced Healthcare Materials, 7, 1800275.

  24. 24.

    del Campo, A., & Arzt, E. (2007). Design parameters and current fabrication approaches for developing bioinspired dry adhesives. Macromolecular Bioscience, 7(2), 118–127.

  25. 25.

    Jeong, H. E., Lee, J.-K., Kim, H. N., Moon, S. H., & Suh, K. Y. (2009). A nontransferring dry adhesive with hierarchical polymer nanohairs. Proceedings of the National Academy of Sciences, 106(14), 5639–5644.

  26. 26.

    Barreau, V., Hensel, R., Guimard, N. K., Ghatak, A., McMeeking, R. M., & Arzt, E. (2016). Fibrillar elastomeric micropatterns create tunable adhesion even to rough surfaces. Advanced Functional Materials, 26(26), 4687–4694.

  27. 27.

    Wang, Z. (2018). Slanted functional gradient micropillars for optimal bioinspired dry adhesion. ACS Nano, 12(2), 1273–1284.

  28. 28.

    Jeong, H. E., Lee, S. H., Kim, P., & Suh, K. Y. (2006). Stretched polymer nanohairs by nanodrawing. Nano Letters, 6(7), 1508–1513.

  29. 29.

    Zhang, Y., Lo, C.-W., Taylor, J. A., & Yang, S. (2006). Replica molding of high-aspect-ratio polymeric nanopillar arrays with high fidelity. Langmuir, 22(20), 8595–8601.

  30. 30.

    Greiner, C., del Campo, A., & Arzt, E. (2007). Adhesion of bioinspired micropatterned surfaces: effects of pillar radius, aspect ratio, and preload. Langmuir, 23(7), 3495–3502.

  31. 31.

    Murphy, M. P., Kim, S., & Sitti, M. (2009). Enhanced adhesion by gecko-inspired hierarchical fibrillar adhesives. ACS Applied Materials & Interfaces, 1(4), 849–855.

  32. 32.

    Kim, D. S., Lee, H. S., Lee, J., Kim, S., Lee, K.-H., Moon, W., et al. (2006). Replication of High-aspect-ratio nanopillar array for biomimetic gecko foot-hair prototype by UV nano embossing with anodic aluminum oxide mold. Microsystem Technologies, 13(5–6), 601–606.

  33. 33.

    Kim, T.-I., Jeong, H. E., Suh, K. Y., & Lee, H. H. (2009). Stooped nanohairs: geometry-controllable, unidirectional, reversible, and robust gecko-like dry adhesive. Advanced Materials, 21(22), 2276–2281.

  34. 34.

    Dinesh, D., & Yang, S. (2010). Stability of high-aspect-ratio micropillar arrays against adhesive and capillary forces. Accounts of Chemical Research, 43(8), 1080–1091.

  35. 35.

    Jeong, H. E., & Suh, K. Y. (2009). Nanohairs and nanotubes: efficient structural elements for gecko-inspired artificial dry adhesives. Nano Today, 4(4), 335–346.

  36. 36.

    Lee, J., Bush, B., Maboudian, R., & Fearing, R. S. (2009). Gecko-inspired combined lamellar and nanofibrillar array for adhesion on nonplanar surface. Langmuir, 25(21), 12449–12453.

  37. 37.

    Yi, H., Seong, M., Sun, K., Hwang, I., Lee, K., Cha, C., et al. (2018). Wet-responsive, reconfigurable, and biocompatible hydrogel adhesive films for transfer printing of nanomembranes. Advanced Functional Materials, 28(18), 1706498.

  38. 38.

    Wang, D., Zhao, A., Jiang, R., Li, D., Zhang, M., Gan, Z., et al. (2012). Surface properties of bionic micro-pillar arrays with various shapes of tips. Applied Surface Science, 259, 93–98.

  39. 39.

    Park, H.-H., Seong, M., Sun, K., Ko, H., Kim, S. M., & Jeong, H. E. (2017). Flexible and shape-reconfigurable hydrogel interlocking adhesives for high adhesion in wet environments based on anisotropic swelling of hydrogel microstructures. ACS Macro Lett., 6(12), 1325–1330.

  40. 40.

    del Campo, A., Greiner, C., Álvarez, I., & Arzt, E. (2007). Patterned surfaces with pillars with controlled 3d tip geometry mimicking bioattachment devices. Advanced Materials, 19(15), 1973–1977.

  41. 41.

    Hu, H., Tian, H., Shao, J., Wang, Y., Li, X., Tian, Y., et al. (2017). Friction contribution to bioinspired mushroom-shaped dry adhesives. Advanced Materials Interfaces, 4(9), 1700016.

  42. 42.

    Yi, H., Kang, M., Kwak, M. K., & Jeong, H. E. (2016). Simple and reliable fabrication of bioinspired mushroom-shaped micropillars with precisely controlled tip geometries. ACS Applied Materials & Interfaces, 8(34), 22671–22678.

  43. 43.

    Hu, H., Tian, H., Shao, J., Li, X., Wang, Y., Wang, Y., et al. (2017). Discretely supported dry adhesive film inspired by biological bending behavior for enhanced performance on a rough surface. ACS Applied Materials & Interfaces, 9(8), 7752–7760.

  44. 44.

    Cho, Y., Kim, G., Cho, Y., Lee, S. Y., Minsky, H., Turner, K. T., et al. (2015). Orthogonal control of stability and tunable dry adhesion by tailoring the shape of tapered nanopillar arrays. Advanced Materials, 27(47), 7788–7793.

  45. 45.

    Raut, H. K., Baji, A., Hariri, H. H., Parveen, H., Soh, G. S., Low, H. Y., et al. (2018). Gecko-Inspired dry adhesive based on micro-nanoscale hierarchical arrays for application in climbing devices. ACS Applied Materials & Interfaces, 10(1), 1288–1296.

  46. 46.

    Seong, M., Jeong, C., Yi, H., Park, H.-H., Bae, W.-G., Park, Y.-B., et al. (2017). Adhesion of bioinspired nanocomposite microstructure at high temperatures. Applied Surface Science, 413, 275–283.

  47. 47.

    Owens, D. K., & Wendt, R. C. (1969). Estimation of the surface free energy of polymers. Journal of Applied Polymer Science, 13(8), 1741–1747.

  48. 48.

    Camino, G., Lomakin, S. M., & Lazzari, M. (2001). Polydimethylsiloxane thermal degradation part 1. Kinetic aspects. Polymer, 42(6), 2395–2402.

  49. 49.

    Simpson, T. R. E., Tabatabaian, Z., Jeynes, C., Parbhoo, B., & Keddie, J. L. (2004). Influence of interfaces on the rates of crosslinking in poly (dimethyl siloxane) coatings. Journal of Polymer Science Part A: Polymer Chemistry, 42(6), 1421–1431.

  50. 50.

    Zhang, Q., Xu, J.-J., Liu, Y., & Chen, H.-Y. (2008). In-situ synthesis of poly(dimethylsiloxane)-gold nanoparticles composite films and its application in microfluidic systems. Lab on a Chip, 8(2), 352–357.

  51. 51.

    Carbone, G., Pierro, E., & Gorb, S. N. (2011). Origin of the superior adhesive performance of mushroom-shaped microstructured surfaces. Soft Matter, 7(12), 5545–5552.

  52. 52.

    Fernandez, V., & Khayet, M. (2015). Evaluation of the surface free energy of plant surfaces: toward standardizing the procedure. Frontiers in plant science, 6, 510.

  53. 53.

    Kendall, K. (1971). The adhesion and surface energy of elastic solids. Journal of Physics D: Applied Physics, 4(8), 1186.

  54. 54.

    Schneider, F., Fellner, T., Wilde, J., & Wallrabe, U. (2008). Mechanical properties of silicones for MEMS. Journal of Micromechanics and Microengineering, 18(6), 065008.

  55. 55.

    Seghir, R., & Arscott, S. (2015). Extended PDMS stiffness range for flexible systems. Sensors and Actuators A: Physical, 230, 33–39.

  56. 56.

    Chin, P., McCullough, R. L., & Wu, W.-L. (1997). An improved procedure for determining the work of adhesion for polymer-solid contact. Journal of Adhesion, 64(1–4), 145–160.

  57. 57.

    Hejda, F., Solar, P., & Kousal, J. (2010). Surface free energy determination by contact angle measurements—A comparison of various approaches. WDS, 10, 25–30.

Download references


This work was supported by the Mid-career Researchers Supporting Program through the National Research Foundation of Korea (NRF) (2016R1A2B2014044) and the Research Grant funded by the Ulsan National Institute of Science and Technology (1.170018) and the Fire Fighting Technology Research and Development Program funded by the Ministry of Public Safety and Security (MPSS-Fire safety-2015-72). On behalf of all authors, the corresponding author states that there is no conflict of interest.

Author information

Correspondence to Hoon Eui Jeong.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2348 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Seong, M., Lee, J., Hwang, I. et al. Significant Adhesion Enhancement of Bioinspired Dry Adhesives by Simple Thermal Treatment. Int. J. of Precis. Eng. and Manuf.-Green Tech. 6, 587–599 (2019). https://doi.org/10.1007/s40684-019-00062-z

Download citation


  • Annealing
  • Dry adhesion
  • Elastic modulus
  • Surface energy
  • Thermal treatment