Effect of Pulsed Electric Current on TRIP-Aided Steel

  • Hye-Jin Jeong
  • Ju-won Park
  • Kyeong Jae Jeong
  • Nong Moon Hwang
  • Sung-Tae Hong
  • Heung Nam HanEmail author
Regular Paper


In the present study, the tensile deformation behavior of transformation-induced plasticity (TRIP)-aided steel under pulsed electric current is investigated. When a pulsed electric current is applied to the specimen during entire tensile deformation, a significant reduction of elongation is observed. The reason is that the mechanically induced martensitic transformation (MIMT) effect does not work properly as the stability of retained austenite phase increases due to temperature rise by the applied electric current. To improve the ductility of the TRIP-aided steel, the pulsing pattern of electric current is modified to apply the electric current only in the early stage of deformation immediately before the phase transformation of retained austenite phase begins to take place. As a result, the elongation is significantly increased by delaying the MIMT effect and making it work properly in the latter stage of deformation. Also, the electrically-induced annealing effect, which occurs in the early stage of deformation where a dislocation plasticity occurs dominantly, contributes to the improvement of elongation. The modified pulsing pattern suggested in the present study provides an easy-to-implement technique to improve the formability of the TRIP-aided steel.


TRIP-aided steel Formability Electroplastic effect Electrically assisted Manufacturing (EAM) Mechanically induced martensitic transformation (MIMT) 



This work was supported by the National Research Foundation of Korea (NRF) grants funded by the Ministry of Science and ICT (MSIT) (No. 2015R1A5A1037627 and No. 2018R1A2B6006856). H.N. Han and H.-J. Jeong were supported by POSCO research project. The Institute of Engineering Research at Seoul National University provided research facilities for this work.


  1. 1.
    Friedrich, H. E., Steinle, P., Kopp, G., & Scholl, R. (2010). Next decades ‘Challenges for Terrestrial Vehicles’ materials and manufacturing to reduce CO2 emissions. Materials Science Forum, 3, 638–642.Google Scholar
  2. 2.
    Jimenez-Melero, E., van Dijk, N. H., Zhao, L., Sietsma, J., Wright, J. P., & van der Zwaag, S. (2011). In situ synchrotron study on the interplay between martensite formation, texture evolution and load partitioning in low-alloyed TRIP steels. Materials Science and Engineering A, 528, 6407–6416.CrossRefGoogle Scholar
  3. 3.
    Jacques, P., Ladriere, J., & Delannay, F. (2011). On the influence of interactions between phases on the mechanical stability of retained austenite in transformation-induced plasticity multiphase steels. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 32, 2759–2768.CrossRefGoogle Scholar
  4. 4.
    Tirumalasetty, G. K., Huis, M. A., van Kwakernaak, C., Sietsma, J., Sloof, W. G., & Zandbergen, H. W. (2012). Deformation-induced austenite grain rotation and transformation in TRIP-assisted steel. Acta Materialia, 60, 1311–1321.CrossRefGoogle Scholar
  5. 5.
    Girault, E., Martens, A., Jacques, P., Houbaert, Y., Verlinden, B., & van Humbeeck, J. (2001). Comparison of the effects of silicon and aluminium on the tensile behaviour of multiphase TRIP-assisted steels. Scripta Materialia, 44, 885–892.CrossRefGoogle Scholar
  6. 6.
    Jacques, P., Furnemont, Q., Mertens, A., & Delannay, F. (2001). On the sources of work hardening in multiphase steels assisted by transformation-induced plasticity. Philosophical Magazine A, 81, 1789–1812.CrossRefGoogle Scholar
  7. 7.
    Han, H. N., & Lee, J. K. (2002). A constitutive model for transformation superplasticity under external stress during phase transformation of steels. ISIJ International, 42, 200–205.CrossRefGoogle Scholar
  8. 8.
    Han, H. N., & Suh, D.-W. (2003). A model for transformation plasticity during bainite transformation of steel under external stress. Acta Materialia, 51, 4907–4917.CrossRefGoogle Scholar
  9. 9.
    Zackay, V. F., Parker, E. R., Fahr, D., & Bush, R. (1967). The enhancement of ductility in high-strength steels. Transactions of American Society for Metals, 60, 252–259.Google Scholar
  10. 10.
    Han, H. N., Oh, C.-S., Kim, G., & Kwon, O. (2009). Design method for TRIP-aided multiphase steel based on a microstructure-based modelling for transformation-induced plasticity and mechanically induced martensitic transformation. Materials Science and Engineering A, 499, 462–468.CrossRefGoogle Scholar
  11. 11.
    Olson, G. B., & Cohen, M. (1982). Stress-assisted isothermal martensitic transformation: Application to TRIP steels. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 13, 1907–1914.CrossRefGoogle Scholar
  12. 12.
    Han, H. N., Lee, C. G., Suh, D.-W., & Kim, S.-J. (2008). A microstructure-based analysis for transformation induced plasticity and mechanically induced martensitic transformation. Materials Science and Engineering A, 485, 224–233.CrossRefGoogle Scholar
  13. 13.
    Carlos, G.-M., & Francisca, G. C. (2005). The role of retained austenite on tensile properties of steels with bainitic microstructures. Materials Transactions, 46, 1839–1846.CrossRefGoogle Scholar
  14. 14.
    Schubert, R. (2003). Warm forming—principles, applications, case study. Society of Manufacture Engineers, Technical papers, EM 87–129, pp. 1–15.Google Scholar
  15. 15.
    Troitskii, O. A. (1969). Electromechanical effect in metals. Pis'ma v Zhurnal Èksperimental'noi i Teoreticheskoi Fiziki, 10, 18–22.Google Scholar
  16. 16.
    Okazaki, K., Kagawa, M., & Conrad, H. (1978). A study of the electroplastic effect in metals. Scripta Metallurgica, 12, 1063–1068.CrossRefGoogle Scholar
  17. 17.
    Conrad, H. (2000). Electroplasticity in metals and ceramics. Materials Science and Engineering A, 287, 276–287.CrossRefGoogle Scholar
  18. 18.
    Ross, C., Roth, J.T. (2005). The effects of DC current on the tensile properties of metals. In Proceedings of the ASME Materials Division Roth 100, (pp. 363–372). New York: ASME.Google Scholar
  19. 19.
    Ross, C. D., Irvin, D. B., & Roth, J. T. (2007). Manufacturing aspects relating to the effects of direct current on the tensile properties of metals. Journal of Engineering Materials and Technology, 129, 342–347.CrossRefGoogle Scholar
  20. 20.
    Kim, M.-J., Lee, K., Oh, K. H., Choi, I. S., Yu, H. H., Hong, S.-T., et al. (2014). Electric current-induced annealing during uniaxial tension of aluminum alloy. Scripta Materialia, 75, 58–61.CrossRefGoogle Scholar
  21. 21.
    Tang, G., Zhang, J., Yan, Y., Zhou, H., & Fang, W. (2003). The engineering application of the electroplastic effect in the cold-drawing of stainless steel wire. Journal of Materials Processing Technology, 137, 96–99.CrossRefGoogle Scholar
  22. 22.
    Kim, M.-S., Vinh, N. T., Yu, H.-H., Hong, S.-T., Lee, H.-W., Kim, M.-J., et al. (2014). Effect of electric current density on the mechanical property of ultra-high strength steels under quasi-static tensile loads. International Journal of Precision Engineering and Manufacturing, 15, 1207–1213.CrossRefGoogle Scholar
  23. 23.
    Lu, W. J., & Qin, R. S. (2016). Stability of martensite with pulsed electric current in dual-phase steels. Materials Science and Engineering A, 677, 252–258.CrossRefGoogle Scholar
  24. 24.
    Nguyen-Tran, H.-D., Oh, H.-S., Hong, S.-T., Han, H. N., Cao, J., Ahn, S.-H., et al. (2015). A review of electrically-assisted manufacturing. International Journal of Precision Engineering and Manufacturing-Green Technology, 2, 365–376.CrossRefGoogle Scholar
  25. 25.
    Thien, N. T., Jeong, Y.-H., Hong, S.-T., Kim, M.-J., Han, H. N., & Lee, M.-G. (2016). Electrically assisted tensile behavior of complex phase ultra-high strength steel. International Journal of Precision Engineering and Manufacturing-Green Technology, 3, 325–333.CrossRefGoogle Scholar
  26. 26.
    Magargee, J., Morestin, F., & Cao, J. (2013). Characterization of flow stress for commercially pure titanium subjected to electrically-assisted deformation. Journal of Engineering Materials and Technology, 135, 041003.CrossRefGoogle Scholar
  27. 27.
    Magargee, J., Fan, R., & Cao, J. (2013). Analysis and observations of current density sensitivity and thermally activated mechanical behavior in electrically-assisted deformation. Journal of Manufacturing Science and Engineering, 135, 061022.CrossRefGoogle Scholar
  28. 28.
    Kim, M.-J., Lee, M.-G., Hariharan, K., Hong, S.-T., Choi, I.-S., Kim, D. Y., et al. (2017). Electric current-assisted deformation behavior of Al-Mg-Si alloy under uniaxial tension. International Journal of Plasticity, 94, 148–170.CrossRefGoogle Scholar
  29. 29.
    Jeong, H.-J., Kim, M.-J., Park, J.-W., Yim, C. D., Kim, J. J., Kwon, O. D., et al. (2017). Effect of pulsed electric current on dissolution of Mg17Al12 phases in as-extruded AZ91 magnesium alloy. Materials Science and Engineering A, 684, 668–676.CrossRefGoogle Scholar
  30. 30.
    Park, J.-W., Jeong, H.-J., Jin, S.-W., Kim, M.-J., Lee, K., Kim, J. J., et al. (2017). Effect of electric current on recrystallization kinetics in interstitial free steel and AZ31 magnesium alloy. Materials Characterization, 133, 70–76.CrossRefGoogle Scholar
  31. 31.
    Sprecher, A. F., Mannan, S. L., & Conrad, H. (1986). Overview no.49 on the mechanisms for the electroplastic effect in metals. Acta Materialia, 37, 1145–1162.CrossRefGoogle Scholar
  32. 32.
    Boiko, Y. I., Geguzin, Y. E., & Klinchuk, Y. I. (1981). Drag of dislocations by an electron wind in metals. Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 81, 2175–2179.Google Scholar
  33. 33.
    Molotskii, M. I., & Fleurov, V. (1995). Magnetic effects in electroplasticity of metals. Physical Review B, 52, 15829–15834.CrossRefGoogle Scholar
  34. 34.
    Liu, X., Lan, S., & Ni, J. (2013). Experimental study of electro-plastic effect on advanced high strength steels. Materials Science and Engineering A, 582, 211–218.CrossRefGoogle Scholar
  35. 35.
    Lee, S.-J., Lee, S., & De Cooman, B. C. (2011). Mn partitioning during the intercritical annealing of ultrafine-grained 6% Mn transformation-induced plasticity steel. Scripta Materialia, 64, 649–652.CrossRefGoogle Scholar
  36. 36.
    Mahieu, J., Maki, J., De cooman, B. C., & Claessens, S. (2002). Phase transformation and mechanical properties of Si-free CMnAl transformation-induced plasticity–aided steel. Metallurgical and Materials Transactions A, 33, 2573–2580.CrossRefGoogle Scholar
  37. 37.
    Williamson, G. K., & Hall, W. H. (1953). X-ray line broadening from filed aluminium and wolfram. Acta Metallurgica, 1, 22–31.CrossRefGoogle Scholar
  38. 38.
    Ungar, T., & Borbely, A. (1996). The effect of dislocation contrast on x-ray line broadening: A new approach to line profile analysis. Applied Physics Letters, 69, 3173–3175.CrossRefGoogle Scholar
  39. 39.
    Ungar, T., Dragomir, I., Revesz, A., & Borbely, A. (1999). The contrast factors of dislocations in cubic crystals: the dislocation model of strain anisotropy in practice. Journal of Applied Crystallography, 32, 992–1002.CrossRefGoogle Scholar
  40. 40.
    Han, H. N., Lee, C. G., Oh, C.-S., Lee, T.-H., & Kim, S.-J. (2004). A model for deformation behavior and mechanically induced martensitic transformation of metastable austenitic steel. Acta Materialia, 52, 5203–5214.CrossRefGoogle Scholar
  41. 41.
    Furnemont, Q., Kempf, M., Jacques, P., Goken, M., & Delannay, F. (2002). On the measurement of the nanohardness of the constitutive phases of TRIP-assisted multiphase steels. Materials Science and Engineering A, 328, 26–32.CrossRefGoogle Scholar
  42. 42.
    Jacchin, K., & Beyer, B. (2000). Thermodynamical calculation of martensite start temperatures in the system FeCrMnNiC. Zeitschrift fuer Metallkunde, 91, 106–113.Google Scholar
  43. 43.
    Sundman, B., Jansson, B., & Andersson, J. O. (1985). The thermo-calc databank system. CALPHAD, 9, 153–190.CrossRefGoogle Scholar
  44. 44.
    Olson, G. B., & Cohen, M. (1975). Kinetics of strain induced martensitic nucleation. Metallurgical Transactions, 6A, 791–795.CrossRefGoogle Scholar
  45. 45.
    Lecroisey, F., & Pineau, A. (1972). Martensitic transformations induced by plastic deformation in the Fe-Ni-Cr-C system. Metallurgical Transactions, 3, 387–396.Google Scholar
  46. 46.
    Jones, S. J., & Bhadeshia, K. H. D. H. (1997). Kinetics of the simultaneous decomposition of austenite into several transformation products. Acta Metallurgica et Materialia, 45, 2911–2920.CrossRefGoogle Scholar

Copyright information

© Korean Society for Precision Engineering 2019

Authors and Affiliations

  • Hye-Jin Jeong
    • 1
  • Ju-won Park
    • 1
  • Kyeong Jae Jeong
    • 1
  • Nong Moon Hwang
    • 1
  • Sung-Tae Hong
    • 2
  • Heung Nam Han
    • 1
    Email author
  1. 1.Department of Materials Science and Engineering and RIAMSeoul National UniversitySeoulSouth Korea
  2. 2.School of Mechanical EngineeringUniversity of UlsanUlsanSouth Korea

Personalised recommendations