Fabrication of Enzymatic Biofuel Cell with Electrodes on Both Sides of Microfluidic Channel

  • Haroon Khan
  • Chul Min Kim
  • Sung Yeol Kim
  • Sanket Goel
  • Prabhat K. Dwivedi
  • Ashutosh Sharma
  • Young Ho Kim
  • Gyu Man KimEmail author
Regular Paper


Enzymatic biofuel cells (EBFCs) that utilize glucose as fuel in a human body to produce electricity are being explored as promising alternatives to power implantable devices. However, some limitations need to be overcome to render such micro-electronic devices practically applicable. Here, we propose a microfluidic EBFC architecture with electrodes on both sides of the microchannel and its fabrication via stencil method. Multiwalled carbon nanotube (MWCNT) electrodes are fabricated on both sides of a Y-shaped microfluidic channel to reduce the effect of the depletion boundary layer and cross-diffusional mixing of the fuel and oxidant, which are functions of the distance from the microchannel inlet. Therefore, the microchannel length is reduced by half, while maintaining the same MWCNT electrode area. The microchannel is produced by polydimethylsiloxane (PDMS) casting whereas the electrodes are fabricated by a PDMS stencil, using MWCNT patterned on etched indium tin oxide glass. The electrodes are modified with glucose oxidase and laccase via direct covalent bonding. The cell performance is studied at different microchannel heights and flow rates, obtaining a maximum power and current density of 153 µW cm−2 and 450 µA cm−2, respectively, at a microchannel height of 450 µm and flow rate of 25 mL h−1. The double-layer EBFC shows a 23% improvement in the performance compared to a single-layer EBFC.


Enzymatic biofuel cell Oxygen depletion layer Membraneless Carbon nanotubes 



This work was supported by the National Research Foundation of Korea Grant (NRF-2017R1A2B4004966 and NRF-2012K1A3A1A19038448) funded by the Korean Government (KMEST).

Conflict of Interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.


  1. 1.
    Moehlenbrock, M. J., & Minteer, S. D. (2008). Extended lifetime biofuel cells. Chemical Society Reviews, 37(6), 1188–1196.CrossRefGoogle Scholar
  2. 2.
    Shukla, A. K., et al. (2004). Biological fuel cells and their applications. Current Science, 87(4), 455–468.Google Scholar
  3. 3.
    Bullen, R. A., et al. (2006). Biofuel cells and their development. Biosensors and Bioelectronics, 21(11), 2015–2045.CrossRefGoogle Scholar
  4. 4.
    Yahiro, A. T., Lee, S. M., & Kimble, D. O. (1964). Bioelectrochemistry: I. Enzyme utilizing bio-fuel cell studies. Biochimica et Biophysica Acta (BBA) Specialized Section on Biophysical Subjects, 88(2), 375–383.CrossRefGoogle Scholar
  5. 5.
    Bockris, J., & Srinivasan, S. (1969). Fuel cells: Their electrochemistry. McGraw-Hill, NewYork.Google Scholar
  6. 6.
    Govil, G., & Saran, A. (1982). Biochemical fuel cells. Journal of the Indian Chemical Society, 59,1226–1228.Google Scholar
  7. 7.
    Palmore, G., & Whitesides, G. M. (1994). Microbial and enzymatic biofuel cells. ACS Symposium Series, 566, 271–290.CrossRefGoogle Scholar
  8. 8.
    Halámková, L., et al. (2012). Implanted biofuel cell operating in a living snail. Journal of the American Chemical Society, 134(11), 5040–5043.CrossRefGoogle Scholar
  9. 9.
    Vielstich, W., Yokokawa, H., & Gasteiger, H. A. (2009). Handbook of fuel cells: Fundamentals technology and applications. John Wiley: New Jersey.Google Scholar
  10. 10.
    Mohiuddin, M., et al. (2015). Transparent and flexible haptic actuator based on cellulose acetate stacked membranes. International Journal of Precision Engineering and Manufacturing, 16(7), 1479–1485.CrossRefGoogle Scholar
  11. 11.
    Kim, H. J., Seo, K. J., & Kim, D. E. (2016). Investigation of mechanical behavior of single-and multi-layer graphene by using molecular dynamics simulation. International Journal of Precision Engineering and Manufacturing, 17(12), 1693–1701.CrossRefGoogle Scholar
  12. 12.
    Zhou, J., & Yang, G. (2006). Nanohole fabrication using FIB, EB and AFM for biomedical applications. International Journal of Precision Engineering and Manufacturing, 7(4), 18–22.Google Scholar
  13. 13.
    Kim, J., Jia, H., & Wang, P. (2006). Challenges in biocatalysis for enzyme-based biofuel cells. Biotechnology advances, 24(3), 296–308.CrossRefGoogle Scholar
  14. 14.
    Shin, Y. C., Novin, E., & Kim, H. (2015). Electrical and thermal conductivities of carbon fiber composites with high concentrations of carbon nanotubes. International Journal of Precision Engineering and Manufacturing, 16(3), 465–470.CrossRefGoogle Scholar
  15. 15.
    Bae, K. M., et al. (2015). Thermobattery based on CNT coated carbon textile and thermoelectric electrolyte. International Journal of Precision Engineering and Manufacturing, 16(7), 1245–1250.CrossRefGoogle Scholar
  16. 16.
    Suh, Y. D., et al. (2016). Selective electro—thermal growth of zinc oxide nanowire on photolithographically patterned electrode for microsensor applications. International Journal of Precision Engineering and Manufacturing Green Technology, 3(2), 173–177.CrossRefGoogle Scholar
  17. 17.
    Rincon, R. A., et al. (2011). Enzymatic fuel cells: Integrating flow-through anode and air-breathing cathode into a membrane-less biofuel cell design. Biosensors and Bioelectronics, 27(1), 132–136.CrossRefGoogle Scholar
  18. 18.
    Zebda, A., et al. (2009). Electrochemical performance of a glucose/oxygen microfluidic biofuel cell. Journal of Power Sources, 193(2), 602–606.CrossRefGoogle Scholar
  19. 19.
    Choban, E. R., et al. (2004). Microfluidic fuel cell based on laminar flow. Journal of Power Sources, 128(1), 54–60.CrossRefGoogle Scholar
  20. 20.
    Amatore, C., et al. (2007). Theory and experiments of transport at channel microband electrodes under laminar flows. 1. Steady-state regimes at a single electrode. Analytical chemistry, 79(22), 8502–8510.CrossRefGoogle Scholar
  21. 21.
    Chen, F., Chang, M. H., & Lin, M. K. (2007). Analysis of membraneless formic acid microfuel cell using a planar microchannel. Electrochimica acta, 52(7), 2506–2514.CrossRefGoogle Scholar
  22. 22.
    Choban, E. R., Waszczuk, P., & Kenis, P. J. A. (2005). Characterization of limiting factors in laminar flow-based membraneless microfuel cells. Electrochemical and Solid-State Letters, 8(7), A348–A352.CrossRefGoogle Scholar
  23. 23.
    Zebda, A., et al. (2011). Enzyme-based microfluidic biofuel cell to generate micropower. Enzyme, 2, O2.Google Scholar
  24. 24.
    Zebda, A., et al. (2010). Membraneless microchannel glucose biofuel cell with improved electrical performances. Sensors and Actuators B Chemical, 149(1), 44–50.CrossRefGoogle Scholar
  25. 25.
    T. D., Dang, T. D., et al. (2011). A novel simple preparation method of a hydrogel mold for PDMS micro-fluidic device fabrication. Journal of Micromechanics and Microengineering, 22(1), 015017.CrossRefGoogle Scholar
  26. 26.
    Choi, J. H., et al. (2012). Micropatterning of neural stem cells and Purkinje neurons using a polydimethylsiloxane (PDMS) stencil. Lab on a Chip, 12(23), 5045–5050.CrossRefGoogle Scholar
  27. 27.
    Beneyton, T., et al. (2013). Membraneless glucose/O2 microfluidic biofuel cells using covalently bound enzymes. Chemical Communications, 49(11), 1094–1096.CrossRefGoogle Scholar
  28. 28.
    Farneth, W. E., & D’Amore, M. B., (2005). Encapsulated laccase electrodes for fuel cell cathodes. Journal of Electroanalytical Chemistry, 581(2), 197–205.CrossRefGoogle Scholar
  29. 29.
    Bedekar, A. S., et al. (2007). Oxygen limitation in microfluidic biofuel cells. Chemical Engineering Communications, 195(3), 256–266.CrossRefGoogle Scholar
  30. 30.
    Ferrigno, R., et al. (2002). Membraneless vanadium redox fuel cell using laminar flow. Journal of the American Chemical Society, 124(44), 12930–12931.CrossRefGoogle Scholar
  31. 31.
    González-Guerrero, M. J., et al. (2013). Membraneless glucose/O2 microfluidic enzymatic biofuel cell using pyrolyzed photoresist film electrodes. Lab on a Chip, 13(15), 2972–2979.CrossRefGoogle Scholar
  32. 32.
    Brunel, L., et al. (2007). Oxygen transport through laccase biocathodes for a membrane-less glucose/O2 biofuel cell. Electrochemistry Communications, 9(2), 331–336.CrossRefGoogle Scholar
  33. 33.
    Tamaki, T., & Yamaguchi, T. (2006). High-surface-area three-dimensional biofuel cell electrode using redox-polymer-grafted carbon. Industrial and Engineering Chemistry Research, 45(9), 3050–3058.CrossRefGoogle Scholar

Copyright information

© Korean Society for Precision Engineering 2019

Authors and Affiliations

  • Haroon Khan
    • 1
  • Chul Min Kim
    • 1
  • Sung Yeol Kim
    • 1
  • Sanket Goel
    • 2
  • Prabhat K. Dwivedi
    • 3
  • Ashutosh Sharma
    • 3
    • 4
  • Young Ho Kim
    • 5
  • Gyu Man Kim
    • 1
    Email author
  1. 1.School of Mechanical EngineeringKyungpook National UniversityDaeguSouth Korea
  2. 2.Birla Institute of Technology and SciencePilaniIndia
  3. 3.Centre for NanosciencesIndian Institute of Technology KanpurKanpurIndia
  4. 4.Department of Chemical EngineeringIndian Institute of TechnologyKanpurIndia
  5. 5.Medical Device Development Centre, Daegu-Gyeongbuk Medical Innovation FoundationDaeguSouth Korea

Personalised recommendations