Investigation on the Effects of Nanoparticles on Cutting Fluid Properties and Tribological Characteristics

  • Nadine MadanchiEmail author
  • Sabrina Zellmer
  • Marius Winter
  • Frederik Flach
  • Georg Garnweitner
  • Christoph Herrmann
Regular Paper


The application of cutting fluid is required to enable efficient machining processes. Depending on the process, additives are used to adjust the performance of the cutting fluid. This paper presents the strong influence of nanoparticles and microparticles on the cutting fluid properties as well as the tribological behavior. The effects of the particle size, the concentration and the base fluid were investigated for two different metal oxides, Al2O3 and ZrO2, as well as silica. While most nanoparticles achieved an improved lubricity, the opposite was found for Al2O3.


Cutting fluid Machining Nanofluids Nanoparticles Tribology 



The authors gratefully acknowledge Benedikt Finke, Institute of Particle Technology, TU Braunschweig, for the support in post-processing the rheological data. The SEM pictures were kindly taken by Peter Pfeiffer, Institute of Material Science.

Supplementary material

40684_2019_53_MOESM1_ESM.docx (1.2 mb)
Supplementary material 1 (DOCX 1242 kb)


  1. 1.
    Denkena, B., & Tönshoff, H. K. (2011). Spanen. Berlin: Springer.CrossRefGoogle Scholar
  2. 2.
    DIN 51385. (2013). Schmierstoffe—Bearbeitungsmedien für die Umformung und Zerspanung von Werkstoffen—Begriffe. Berlin: Beuth Verlag GmbH.Google Scholar
  3. 3.
    Brinksmeier, E., Meyer, D., Huesmann-Cordes, A. G., & Herrmann, C. (2015). Metalworking fluids—mechanisms and performance. CIRP Ann Manuf Technol, 64(2), 605–628.CrossRefGoogle Scholar
  4. 4.
    Winter M., Öhlschläger G., Dettmer T., Ibbotson S., Kara S. & Herrmann C., Using Jatropha oil based metalworking fluids in machining processes: A functional and ecological life cycle evaluation. Proceedings of the 19th CIRP Conference on Life Cycle Engineering, pp. 311–316, 2012.Google Scholar
  5. 5.
    Winter, M., Bock, R., Herrmann, C., Stache, H., Wichmann, H., & Bahadir, M. (2012). Technological evaluation of a novel glycerol based biocide-free metalworking fluid. Journal of Cleaner Production, 35, 176–182.CrossRefGoogle Scholar
  6. 6.
    Winter, M., Bock, R., & Herrmann, C. (2013). Investigation of a new polymer-water based cutting fluid to substitute mineral oil based fluids in grinding processes. CIRP Journal of Manufacturing Science and Technology, 6(4), 254–262.CrossRefGoogle Scholar
  7. 7.
    Zhao F, Skerlos SJ, Clarens AF, Hayes KF (2017) Evaluating activation conditions for extreme pressure additives in metalworking fluids using the thread forming test. 35th North American Manufacturing Research Conference. Vol. 35, pp. 351–358, 2017.Google Scholar
  8. 8.
    Landau H. (1986). Chlorparaffine als EP-Additive in Metall-bearbeitungsflüssigkeiten. 5. Internationalen Schmierstoff-Kolloquium in EsslingenGoogle Scholar
  9. 9.
    Schulz, J., & Holweger, W. (2010). Wechselwirkung von Additiven mit Metalloberflächen. Renningen: Expert-Verlag.Google Scholar
  10. 10.
    Madanchi N., Kurle D., Winter M., Thiede S. and Herrmann C. (2015) Energy efficient process chain: The impact of cutting fluid strategies. In Proceedings of the 22th CIRP Conference on Life Cycle Engineering (Vol. 29, pp. 360–365).Google Scholar
  11. 11.
    Jawahir, I. S., Attia, H., Biermann, D., et al. (2016). Cryogenic manufacturing processes. CIRP Annals Manufacturing Technology, 65(2), 713–736.CrossRefGoogle Scholar
  12. 12.
    Weinert, K. (1999). Trockenbearbeitung und Minimalmengen-kühlschmierung: Einsatz in der spanenden Fertigungstechnik. Berlin: Springer.CrossRefGoogle Scholar
  13. 13.
    Weinert, K., Inasaki, I., Sutherland, J. W., & Wakabayashi, T. (2004). Dry machining and minimum quantity lubrication. CIRP Annals Manufacturing Technology., 53(2), 511–537.CrossRefGoogle Scholar
  14. 14.
    Deutsche Gesetzliche Unfallversicherung (DGUV). (2010). Minimum quantity lubrication for machining operations. Berlin, BGI/GUV-I 718 EGoogle Scholar
  15. 15.
    Neugebauer R., Wertheim R. & Harzbecker C. (2011). Energy and resources efficiency in the metal cutting industry. In: Seliger G, Khraisheh MM, Jawahir IS, eds. Advances in sustainable manufacturing: Proceedings of the 8th Global Conference on Sustainable Manufacturing. Berlin, Heidelberg, Springer-Verlag Berlin Heidelberg, pp. 249–259.Google Scholar
  16. 16.
    Taylor, R., Coulombe, S., Otanicar, T., et al. (2013). Small particles, big impacts: A review of the diverse applications of nanofluids. Journal of Applied Physics, 113(1), 11301.CrossRefGoogle Scholar
  17. 17.
    Agarwal, D. K., Vaidyanathan, A., & Kumar, S. S. (2015). Investigation on convective heat transfer behaviour of kerosene-Al2O3 nanofluid. Applied Thermal Engineering, 84, 64–73.CrossRefGoogle Scholar
  18. 18.
    Ghadimi, A., Saidur, R., & Metselaar, H. (2011). A review of nanofluid stability properties and characterization in stationary conditions. International Journal of Heat and Mass Transfer, 54(17–18), 4051–4068.CrossRefGoogle Scholar
  19. 19.
    Sridhara, V., & Satapathy, L. N. (2011). Al2O3-based nanofluids: A review. Nanoscale Research Letters, 6, 456.CrossRefGoogle Scholar
  20. 20.
    Kleinstreuer, C., & Feng, Y. (2011). Experimental and theoretical studies of nanofluid thermal conductivity enhancement: A review. Nanoscale Research Letters, 6(1), 229.CrossRefGoogle Scholar
  21. 21.
    Saidur, R., Leong, K. Y., & Mohammad, H. A. (2011). A review on applications and challenges of nanofluids. Renewable and Sustainable Energy Reviews, 15(3), 1646–1668.CrossRefGoogle Scholar
  22. 22.
    Sidik, N., Yazid, M., & Mamat, R. (2015). A review on the application of nanofluids in vehicle engine cooling system. International Communications in Heat and Mass Transfer, 68, 85–90.CrossRefGoogle Scholar
  23. 23.
    Ansarifar, G. R., & Ebrahimian, M. (2016). Design and neutronic investigation of the Nano fluids application to VVER-1000 nuclear reactor with dual cooled annular fuel. Annals of Nuclear Energy, 87, 39–47.CrossRefGoogle Scholar
  24. 24.
    Murshed, S. S., & Estellé, P. A. (2017). state of the art review on viscosity of nanofluids. Renewable and Sustainable Energy Reviews, 76, 1134–1152.CrossRefGoogle Scholar
  25. 25.
    Stolzenburg, P., & Garnweitner, G. (2017). Experimental and numerical insights into the formation of zirconia nanoparticles: A population balance model for the nonaqueous synthesis. Reaction Chemistry and Engineering, 2, 337–348.CrossRefGoogle Scholar
  26. 26.
    Breitung-Faes, S., & Kwade, A. (2014). Use of an enhanced stress model for the optimization of wet stirred media milling processes. Chemical Engineering and Technology, 37(5), 819–826.CrossRefGoogle Scholar
  27. 27.
    Lee, P.-H., Nam, J. S., Li, C., & Lee, S. W. (2012). An experimental study on micro-grinding process with nanofluid minimum quantity lubrication (MQL). International Journal of Precision Engineering and Manufacturing, 13(3), 331–338.CrossRefGoogle Scholar
  28. 28.
    Shen, B., Shih, A. J., & Tung, S. C. (2008). Application of nanofluids in minimum quantity lubrication grinding. Tribology Transactions, 51(6), 730–737.CrossRefGoogle Scholar
  29. 29.
    Lee, P.-H., Lee, S. W., Lim, S.-H., Lee, S.-H., Ko, H. S., & Shin, S.-W. (2015). A study on thermal characteristics of micro-scale grinding process using nanofluid minimum quantity lubrication (MQL). International Journal of Precision Engineering and Manufacturing, 16(9), 1899–1909.CrossRefGoogle Scholar
  30. 30.
    Mao, C., Tang, X., Zou, H., Huang, X., & Zhou, Z. (2012). Investigation of grinding characteristic using nanofluid minimum quantity lubrication. International Journal of Precision Engineering and Manufacturing, 13(10), 1745–1752.CrossRefGoogle Scholar
  31. 31.
    Mao, C., Huang, Y., Zhou, X., Gan, H., Zhang, J., & Zhou, Z. (2014). The tribological properties of nanofluid used in minimum quantity lubrication grinding. The International Journal of Advanced Manufacturing Technology., 71(5–8), 1221–1228.CrossRefGoogle Scholar
  32. 32.
    Wang, Y., Li, C., Zhang, Y., Yang, M., Zhang, X., Zhang, N., et al. (2017). Experimental evaluation on tribological performance of the wheel/workpiece interface in minimum quantity lubrication grinding with different concentrations of Al2O3 nanofluids. Journal of Cleaner Production., 142, 3571–3583.CrossRefGoogle Scholar
  33. 33.
    Wang, Y., Li, C., Zhang, Y., Yang, M., Li, B., Dong, L., et al. (2018). Processing characteristics of vegetable oil-based nanofluid MQL for grinding different workpiece materials. International Journal of Precision Engineering and Manufacturing-Green Technology, 5(2), 327–339.CrossRefGoogle Scholar
  34. 34.
    Sinha, M. K., Madarkar, R., Ghosh, S., & Rao, P. V. (2017). Application of eco-friendly nanofluids during grinding of Inconel 718 through small quantity lubrication. Journal of Cleaner Production., 141, 1359–1375.CrossRefGoogle Scholar
  35. 35.
    Knieke, C., Sommer, M., & Peukert, W. (2009). Identifying the apparent and true grinding limit. Powder Technology, 195(1), 25–30.CrossRefGoogle Scholar
  36. 36.
    Stenger, F., MEnde, S., Schwedes, J., & Peukert, W. (2005). The influence of suspension properties on the grinding behavior of alumina particles in the submicron size range in stirred media mills. Powder Technology, 156, 103–110.CrossRefGoogle Scholar
  37. 37.
    Zellmer, S., Titscher, P., Wienken, E., Kwade, A., & Garnweitner, G. (2017). Fabrication of carbon-sulphur composites via a vibration mill process as cathode material for lithium sulphur batteries. Energy Storage Materials, 9, 70–77.CrossRefGoogle Scholar
  38. 38.
    Tkáčová, K., Heegn, H., & Števulová, N. (1993). Energy transfer and conversion during comminution and mechanical activation. International Journal of Mineral Processing, 40, 17–31.CrossRefGoogle Scholar
  39. 39.
    Heegn, H. (1990). Mechanische Aktivierung von Festkörpern. Chemie Ingenieur Technik, 62, 458–464.CrossRefGoogle Scholar

Copyright information

© Korean Society for Precision Engineering 2019

Authors and Affiliations

  • Nadine Madanchi
    • 1
    Email author
  • Sabrina Zellmer
    • 2
  • Marius Winter
    • 1
  • Frederik Flach
    • 2
  • Georg Garnweitner
    • 2
  • Christoph Herrmann
    • 1
  1. 1.Institute of Machine Tools and Production Technology, Sustainable Manufacturing and Life Cycle Engineering Research GroupTechnische Universität BraunschweigBrunswickGermany
  2. 2.Institute for Particle TechnologyTechnische Universität BraunschweigBrunswickGermany

Personalised recommendations