Advertisement

Anode Power Deposition in Dry EDM

  • Felipe T. B. MacedoEmail author
  • Moritz Wiessner
  • Christoph Hollenstein
  • Caroline P. Martendal
  • Friedrich Kuster
  • Konrad Wegener
Regular Paper
  • 57 Downloads

Abstract

Dry electrical discharge machining (DEDM) has been developed as an environmentally friendlier alternative to the traditional EDM in oil-based dielectric. Proper understanding of the physics of the DEDM discharges is necessary in order to improve this new manufacturing technology, since its workpiece material removal and tool electrode wear mechanisms are governed by plasma-material interactions. The present work proposes the application of theoretical models, numerical simulations, and advanced diagnostics from the field of plasma physics as effective tools to estimate the electric discharge power deposition onto the anode workpiece in DEDM. Collisional-radiative models are used here to calculate several plasma properties, from which the anode power deposition can be estimated. In addition, electrical circuit simulations, which use a modified Cassie-Mayr model, calculate the fraction of the total electric discharge power that is consumed by thermal conduction into the anode electrode material. The methods proposed in the present work provide fundamental information for further workpiece material erosion modelling and simulation under different DEDM processing conditions.

Keywords

Dry electrical discharge machining (DEDM) Electrical circuit simulation Electron beam Emission spectra simulation Energy Optical emission spectroscopy 

Notes

Acknowledgement

We would like to thank Dr. Raoul Roth for his great collaboration.

References

  1. 1.
    Leão, F. N., & Pashby, I. R. (2004). A review on the use of environmentally-friendly dielectric fluids in electrical discharge machining. Journal of Materials Processing Technology, 149(1–3), 341–346.CrossRefGoogle Scholar
  2. 2.
    Kunieda, M., Furuoya, S., & Taniguchi, N. (1991). Improvement of EDM Efficiency by Supplying Oxygen Gas into Gap. CIRP Annals—Manufacturing Technology, 40(1), 215–218.CrossRefGoogle Scholar
  3. 3.
    Kunieda, M., Miyoshi, Y., Takaya, T., Nakajima, N., ZhanBo, Y., & Yoshida, M. (2003). High Speed 3D Milling by Dry EDM. CIRP Annals—Manufacturing Technology, 52(1), 147–150.CrossRefGoogle Scholar
  4. 4.
    Islam, M. M., Li, C. P., & Ko, T. J. (2017). Dry electrical discharge machining for deburring drilled holes in CFRP composite. International Journal of Precision Engineering and Manufacturing-Green Technology, 4(2), 149–154.CrossRefGoogle Scholar
  5. 5.
    Shen, Y., Liu, Y., Zhang, Y., Dong, H., Sun, W., Wang, X., et al. (2015). High-speed dry electrical discharge machining. International Journal of Machine Tools and Manufacture, 93, 19–25.CrossRefGoogle Scholar
  6. 6.
    Uhlmann, E., Schimmelpfennig, T.-M., Perfilov, I., Streckenbach, J., & Schweitzer, L. (2016). Comparative analysis of dry-EDM and conventional EDM for the manufacturing of micro holes in Si3N4-TiN. Procedia CIRP, 42, 173–178.CrossRefGoogle Scholar
  7. 7.
    Govindan, P., & Joshi, S. S. (2011). Investigations into performance of dry EDM using slotted electrodes. International journal of precision Engineering and Manufacturing, 12(6), 957–963.CrossRefGoogle Scholar
  8. 8.
    DiBitonto, D. D., Eubank, P. T., Patel, M. R., & Barrufet, M. A. (1989). Theoretical models of the electrical discharge machining process. I. A simple cathode erosion model. Journal of Applied Physics, 66(9), 4095–4103.CrossRefGoogle Scholar
  9. 9.
    Patel, M. R., Barrufet, M. A., Eubank, P. T., & DiBitonto, D. D. (1989). Theoretical models of the electrical discharge machining process. II. The anode erosion model. Journal of Applied Physics, 66(9), 4104–4111.CrossRefGoogle Scholar
  10. 10.
    Yeo, S., Kurnia, W., & Tan, P. (2007). Electro-thermal modelling of anode and cathode in micro-EDM. Journal of Physics. D. Applied Physics, 40(8), 2513.CrossRefGoogle Scholar
  11. 11.
    Zhang, Y., Liu, Y., Shen, Y., Li, Z., Ji, R., & Cai, B. (2014). A novel method of determining energy distribution and plasma diameter of EDM. International Journal of Heat and Mass Transfer, 75, 425–432.CrossRefGoogle Scholar
  12. 12.
    Revaz, B., Witz, G., & Flükiger, R. (2005). Properties of the plasma channel in liquid discharges inferred from cathode local temperature measurements. Journal of Applied Physics, 98(11), 113305.CrossRefGoogle Scholar
  13. 13.
    Zahiruddin, M., & Kunieda, M. (2010). Energy distribution ratio into micro EDM electrodes. Journal of Advanced Mechanical Design, Systems, and Manufacturing., 4(6), 1095–1106.CrossRefGoogle Scholar
  14. 14.
    Kunieda, M., Lauwers, B., Rajurkar, K. P., & Schumacher, B. M. (2005). Advancing EDM through Fundamental Insight into the Process. CIRP Annals—Manufacturing Technology, 54(2), 64–87.CrossRefGoogle Scholar
  15. 15.
    Hayakawa, S., & Kunieda, M. (1996). Numerical analysis of arc plasma temperature in EDM process based on magnetohydrodynamics. Transactions of the Japan Society of Mechanical Engineers, Part B, 62(600), 3171–3177.CrossRefGoogle Scholar
  16. 16.
    Hayakawa, S., Yuzawa, M., Kunieda, M., & Nishiwaki, N. (2001). Time variation and mechanism of determining power distribution in electrodes during EDM process. International journal of electrical machining, 6, 19–25.CrossRefGoogle Scholar
  17. 17.
    Perez, R., Rojas, H., Walder, G., & Flükiger, R. (2004). Theoretical modeling of energy balance in electroerosion. Journal of Materials Processing Technology, 149(1), 198–203.CrossRefGoogle Scholar
  18. 18.
    Descoeudres, A. (2006). Characterization of electrical discharge machining plasmas. Lausanne: EPFL.Google Scholar
  19. 19.
    Klocke, F., Fertigungsverfahren 3 Abtragen, Generieren Lasermaterialbearbeitung. 4., neu bearbeitete Auflage ed. VDI-Buch, ed. W. König. Berlin: Springer . Vol. 2007.Google Scholar
  20. 20.
    Roth, R., Balzer, H., Kuster, F., & Wegener, K. (2012). Influence of the anode material on the breakdown behavior in dry electrical discharge machining. Procedia CIRP, 1, 639–644.CrossRefGoogle Scholar
  21. 21.
    Klas, M. M. Š., Radjenović, B., & Radmilović-Radjenović, M. (2011). Experimental and theoretical studies of the breakdown voltage characteristics at micrometre separations in air. EPL (Europhys Lett), 95(3), 35002.CrossRefGoogle Scholar
  22. 22.
    Kunieda, M., Yoshida, M., & Taniguchi, N. (1997). Electrical Discharge Machining in Gas. CIRP Annals—Manufacturing Technology, 46(1), 143–146.CrossRefGoogle Scholar
  23. 23.
    Roth, R., Kuster, F., & Wegener, K. (2013). Influence of oxidizing gas on the stability of dry electrical discharge machining process. Procedia CIRP, 6, 338–343.CrossRefGoogle Scholar
  24. 24.
    Macedo, F. T. B., Wiessner, M., Hollenstein, C., Kuster, F., & Wegener, K. (2016). Investigation of the fundamentals of tool electrode wear in dry EDM. Procedia CIRP, 46, 55–58.CrossRefGoogle Scholar
  25. 25.
    Bacon, F., & Watts, H. (1975). Vacuum arc anode plasma. II. Collisional-radiative model and comparison with experiment. Journal of Applied Physics, 46(11), 4758–4766.CrossRefGoogle Scholar
  26. 26.
    Jakubowski, L., & Sadowski, M. J. (2002). Hot-spots in plasma-focus discharges as intense sources of different radiation pulses. Brazilian Journal of Physics, 32, 187–192.CrossRefGoogle Scholar
  27. 27.
    Guile, A. (1971). Arc-electrode phenomena. Electrical Engineers, Proceedings of the Institution of, 118(9), 1131–1154.CrossRefGoogle Scholar
  28. 28.
    Miller, H. C. (1983). Vacuum-arc anode phenomena. IEEE Transactions on Plasma Science, 11(2), 76–89.CrossRefGoogle Scholar
  29. 29.
    Baalrud, S., Hershkowitz, N., & Longmier, B. (2007). Global nonambipolar flow: plasma confinement where all electrons are lost to one boundary and all positive ions to another boundary. Physics of Plasmas, 14(4), 042109.CrossRefGoogle Scholar
  30. 30.
    Kushner, M., & Pindroh, A. (1986). Discharge constriction, photodetachment, and ionization instabilities in electron-beam-sustained discharge excimer lasers. Journal of Applied Physics, 60(3), 904–914.CrossRefGoogle Scholar
  31. 31.
    Baalrud, S., Longmier, B., & Hershkowitz, N. (2009). Equilibrium states of anodic double layers. Plasma Sources Science and Technology, 18(3), 035002.CrossRefGoogle Scholar
  32. 32.
    Govindan, P., Gupta, A., Joshi, S. S., Malshe, A., & Rajurkar, K. P. (2013). Single-spark analysis of removal phenomenon in magnetic field assisted dry EDM. Journal of Materials Processing Technology, 213(7), 1048–1058.CrossRefGoogle Scholar
  33. 33.
    Macedo, F. T. B., Wiessner, M., Hollenstein, C., Esteves, P. M. B., & Wegener, K. (2017). Fundamental investigation of dry electrical discharge machining (DEDM) by optical emission spectroscopy and its numerical interpretation. The International Journal of Advanced Manufacturing Technology, 90(9), 3697–3709.CrossRefGoogle Scholar
  34. 34.
    Macedo, F.T.B., Wiessner, M., Bernardelli, G.C., Kuster, F., & Wegener, K. (2018). Fundamental investigation of EDM plasmas, part II: parametric analysis of electric discharges in gaseous dielectric medium. Procedia CIRP, 68, 336–341.CrossRefGoogle Scholar
  35. 35.
    Tsai, Y., & Lu, C. (2007). Influence of current impulse on machining characteristics in EDM. Journal of Mechanical Science and Technology, 21(10), 1617–1621.CrossRefGoogle Scholar
  36. 36.
    Kunze, H. J. (2012). Introduction to Plasma Spectroscopy (Vol. 2009). Berlin Heidelberg: Springer.Google Scholar
  37. 37.
    MacFarlane, J. J., Golovkin, I. E., Wang, P., Woodruff, P. R., & Pereyra, N. A. (2007). SPECT3D—a multi-dimensional collisional-radiative code for generating diagnostic signatures based on hydrodynamics and PIC simulation output. High Energy Density Physics, 3(1–2), 181–190.CrossRefGoogle Scholar
  38. 38.
    Chung, H., R. Lee, M. Chen, Y. Ralchenko. (2008). The how to for FLYCHK. http://nlte.nist.gov/fly/[cit.2010-01-10]. Accessed 1 July 2017.Google Scholar
  39. 39.
    Wang, P. (1991). Computation and application of atomic data for inertial confinement fusion plasmas. Madison, Wisconsin: The University of Wisconsin-Madison.Google Scholar
  40. 40.
    Gigosos, M. A., & Cardeñoso, V. (1996). New plasma diagnosis tables of hydrogen stark broadening including ion dynamics. Journal of Physics B, 29(20), 4795.CrossRefGoogle Scholar
  41. 41.
    Wiessner, M., Macedo, F.T.B., Martendal, C.P., Kuster, F., & Wegener, K. (2018). Fundamental investigation of EDM plasmas, part I: a comparison between electric discharges in gaseous and liquid dielectric media. Procedia CIRP, 68, 330–335.CrossRefGoogle Scholar
  42. 42.
    Ralchenko, Y., Kramida, A.E., & Reader, J., (2008). NIST atomic spectra database. Gaithersburg, MD: National Institute of Standards and Technology.Google Scholar
  43. 43.
    Bacon, F. M. (1975). Vacuum arc anode plasma. I. Spectroscopic investigation. Journal of Applied Physics, 46(11), 4750–4757.CrossRefGoogle Scholar
  44. 44.
    Pfender, E. (1976). Heat transfer from thermal plasmas to neighboring walls or electrodes. Pure and Applied Chemistry, 48(2), 199–213.CrossRefGoogle Scholar
  45. 45.
    Cressault, Y., & Gleizes, A. (2013). Thermal plasma properties for Ar–Al, Ar–Fe and Ar–Cu mixtures used in welding plasmas processes: I. Net emission coefficients at atmospheric pressure. Journal of Physics D, 46(41), 415206.CrossRefGoogle Scholar
  46. 46.
    Cassie, A.M. (1939). Arc rupture and circuit severity: a new theory. CIGRE report.Google Scholar
  47. 47.
    Mayr, O. (1943). Beitrag zur theorie der statischen und der dynamishchen litchbogens. Arch. f. Elektrotechnik, 37, 588–608.CrossRefGoogle Scholar
  48. 48.
    Lu, S., Cheng, Z., Wu, B., Sotudeh. R. (2002). Modeling of neon tube powered by high frequency converters. In: IEEE. in IECON 02 [IEEE 2002 28th annual conference of the industrial electronics society].Google Scholar
  49. 49.
    Tuinenga, P.W. (1995). SPICE: a guide to circuit simulation and analysis using PSpice (Vol. 1995). Upper Saddle River: Prentice Hall PTR.zbMATHGoogle Scholar
  50. 50.
    Eckert, E., & Pfender, E. (1967). Advances in plasma heat transfer. Advances in Heat Transfer, 4, 229–316.CrossRefGoogle Scholar
  51. 51.
    Pfender, E. (1997). Heat transfer in thermal plasmas. In: Julian Szekely Memorial Symposium on Materials Processing.Google Scholar

Copyright information

© Korean Society for Precision Engineering 2019

Authors and Affiliations

  1. 1.Institute of Machine Tools and Manufacturing (IWF), ETH ZurichZurichSwitzerland
  2. 2.LutrySwitzerland

Personalised recommendations