Profitable Production of Stable Electrical Power Using Wind-battery Hybrid Power Systems: A Case Study from Mt. Taegi, South Korea
Abstract
In this study, wind-battery hybrid power systems are designed, evaluated, and optimized for regular supply of electrical power at a designated minimum load level with no shortage. Our simulation uses lead-acid batteries and vanadium redox flow batteries (VRBs) for storage, and utilizes hourly wind speed data measured in 2012 at Mt. Taegi in South Korea. Twenty Vestas V80 wind turbines, each rated at 2 MW, are used as power generators, on the basis of an actual wind turbine project recently installed at Mt. Taegi. Sale to the main grid of electricity generated in excess of the minimum load offset the initial capital costs for installation of the wind turbines and batteries. Results show that the optimized wind-VRB hybrid system can supply more than 9 MW of regular electrical power at no cost. Even higher levels of production are profitable with sale of the wind-generated electricity directly to a demand site at a price greater than the price of sales to the main grid. A reduction in the VRB electrolyte costs and an increase in carbon taxes can also increase profitability.
Keywords
Wind power Wind hybrid systems Energy storage systems Microgrid simulationList of symbols
- HOMER
Hybrid optimization model for multiple energy resources
- VRB
Vanadium redox flow battery
- KPX
Korea power exchange
- KEPCO
Korea Electric Power Corporation
- HRES
Hybrid renewable energy systems
- NPR
Net present revenue ($)
- NPC
Net present cost ($)
- SMP
System marginal price ($)
- SMPh
System marginal price for each hour during a year ($)
- ETS
Emission trading scheme
- Uhub
Wind speed at the hub height of the wind turbine (m/s)
- Uanem
Wind speed at the anemometer height (m/s)
- zhub
Hub height of the wind turbine (m)
- zanem
Anemometer height (m)
- zo
Surface roughness length (m)
- fd
Discount factor
- I
Real interest rate (%)
Notes
Acknowledgements
This work was supported by the Korea Institute of Energy Technology Evaluation and Planning (KETEP) and the Ministry of Trade, Industry & Energy (MOTIE) of the Republic of Korea (No. 20173010032170).
References
- 1.Kumar, R., & Agarwala, A. (2013). Renewable energy certificate and perform, achieve, trade mechanisms to enhance the energy security for india. Energy Policy, 55, 669–676.Google Scholar
- 2.Freitas, I. M. B., Dantas, E., & Iizuka, M. (2012). The Kyoto mechanisms and the diffusion of renewable energy technologies in the BRICS. Energy Policy, 42, 118–128.Google Scholar
- 3.González, P., Hernández, F., & Gual, M. (2005). The implications of the Kyoto project mechanisms for the deployment of renewable electricity in Europe. Energy Policy, 33, 2010–2022.Google Scholar
- 4.Yue, C.-D., & Yang, G. G.-L. (2007). Decision support system for exploiting local renewable energy sources: a case study of the Chigu area of southwestern Taiwan. Energy Policy, 35(1), 383–394.Google Scholar
- 5.Sayigh, A. (2004). South–south networking and cooperation on renewable energy and sustainable development. Renewable Energy, 29(15), 2273–2275.Google Scholar
- 6.Lund, H. (2007). Renewable energy strategies for sustainable development. Energy, 32(6), 912–919.MathSciNetGoogle Scholar
- 7.Nagy, K., & Körmendi, K. (2012). Use of renewable energy sources in light of the “new energy strategy for Europe 2011–2020”. Applied Energy, 96, 393–399.Google Scholar
- 8.European Wind Energy Association (EWEA), “Wind in power: 2013 European statistics”. http://www.ewea.org/fileadmin/files/library/publications/statistics/EWEA_Annual_Statistics_2013.pdf. Accessed Aug 2017.
- 9.European Wind Energy Association (EWEA), “2030: The next steps for eu climate and energy policy”. http://www.ewea.org/fileadmin/files/library/publications/reports/2030.pdf. Accessed Aug 2017.
- 10.Lauha, F., Steve, S., Sgruti, S., and Limig, Q. (2012) Global wind report annual market update 2013. Global Wind Energy Council, pp 16–25.Google Scholar
- 11.Kang, S. I., Oh, J.-g., & Kim, H. (2012) Korea’s low-carbon green growth strategy, OECD Development Centre Working Paper, No. 310.Google Scholar
- 12.Korea Wind Energy Industry Association (KWEIA). Internal report, 2014. Accessed March 2014.Google Scholar
- 13.European Wind Energy Association (EWEA), The european offshore wind industry—key trends and statistics 2013. http://www.ewea.org/fileadmin/files/library/publications/statistics/European_offshore_statistics_2013.pdf. Accessed Aug 2017.
- 14.United States National Renewable Energy Laboratory (NREL). (2010). Large-scale offshore wind power in the United States: Assessment of opportunities and barriers. Golden: NREL.Google Scholar
- 15.Pelc, R., & Fujita, R. M. (2002). Renewable energy from the ocean. Marine Policy, 26(6), 471–479.Google Scholar
- 16.Bae, K., & Shim, J. H. (2012). Economic and environmental analysis of a wind-hybrid power system with desalination in Hong-do, South Korea. International Journal of Precision Engineering and Manufacturing, 13(4), 623–630.Google Scholar
- 17.Korea Power Exchange, Internal report. Accessed April 2013.Google Scholar
- 18.Choi, Y.-J., & Kim, S.-Y. (2018). A study on determining an appropriate power trading contracts to promote renewable energy systems. International Journal of Precision Engineering, 5, 623–630.Google Scholar
- 19.Zhou, W., Lou, C., Li, Z., Lu, L., & Yang, H. (2010). Current status of research on optimum sizing of stand-alone hybrid solar–wind power generation systems. Applied Energy, 87(2), 380–389.Google Scholar
- 20.Yang, H., Wei, Z., & Chengzhi, L. (2009). Optimal design and techno-economic analysis of a hybrid solar–wind power generation system. Applied Energy, 86(2), 163–169.Google Scholar
- 21.Nandi, S. K., & Ghosh, H. R. (2010). Prospect of wind–PV-battery hybrid power system as an alternative to grid extension in Bangladesh. Energy, 35(7), 3040–3047.Google Scholar
- 22.Li, C., Ge, X., Zheng, Y., Xu, C., Ren, Y., Song, C., et al. (2013). Techno-economic feasibility study of autonomous hybrid wind/PV/battery power system for a household in Urumqi, China. Energy, 55, 263–272.Google Scholar
- 23.Ma, T., Yang, H., & Lu, L. (2014). A feasibility study of a stand-alone hybrid solar–wind–battery system for a remote island. Applied Energy, 121, 149–158.Google Scholar
- 24.Sreeraj, E., Chatterjee, K., & Bandyopadhyay, S. (2010). Design of isolated renewable hybrid power systems. Solar Energy, 84(7), 1124–1136.Google Scholar
- 25.Chen, H.-C. (2013). Optimum capacity determination of stand-alone hybrid generation system considering cost and reliability. Applied Energy, 103, 155–164.Google Scholar
- 26.Fadaeenejad, M., Radzi, M., AbKadir, M., & Hizam, H. (2014). Assessment of hybrid renewable power sources for rural electrification in Malaysia. Renewable and Sustainable Energy Reviews, 30, 299–305.Google Scholar
- 27.Al-Fatlawi, A., Abdul-Hakim, S. R., Ward, T., & Rahim, N. A. (2014). Technical and economic analysis of renewable energy powered stand-alone pole street lights for remote area. Environmental Progress and Sustainable Energy, 33, 283–289.Google Scholar
- 28.Bhandari, B., Lee, K.-T., Chu, W.-S., Lee, C. S., Song, C.-K., Bhandari, P., et al. (2017). Socio-economic impact of renewable energy-based power system in mountainous villages of Nepal. International Journal of Precision Engineering and Manufacturing, 4, 37–44.Google Scholar
- 29.Ataei, A., Nedaei, M., Rashidi, R., & Yoo, C. (2015). Optimum design of an off-grid hybrid renewable energy system for an office building. Journal of Renewable and Sustainable Energy, 7(5), 053123.Google Scholar
- 30.Wai, R. J., Lin, Y. F., & Chen, Y. C. (2014). Design of installation capacity evaluation mechanism for hybrid energy generation system. Environmental Progress and Sustainable Energy, 33(4), 1322–1331.Google Scholar
- 31.Bhandari, B., Lee, K.-T., Lee, C. S., Song, C.-K., Maskey, R. K., & Ahn, S.-H. (2014). A novel off-grid hybrid power system comprised of solar photovoltaic, wind, and hydro energy sources. Applied Energy, 133, 236–242.Google Scholar
- 32.Bhandari, B., Lee, K.-T., Lee, G.-Y., Cho, Y.-M., & Ahn, S.-H. (2015). Optimization of hybrid renewable energy power systems: A review. International Journal of Precision Engineering and Manufacturing, 2, 99–112.Google Scholar
- 33.Bekele, G., & Tadesse, G. (2012). Feasibility study of small Hydro/PV/Wind hybrid system for off-grid rural electrification in Ethiopia. Applied Energy, 97, 5–15.Google Scholar
- 34.Hessami, M.-A., Campbell, H., & Sanguinetti, C. (2011). A feasibility study of hybrid wind power systems for remote communities. Energy Policy, 39(2), 877–886.Google Scholar
- 35.Al-Badi, A. (2011). Hybrid (solar and wind) energy system for Al Hallaniyat island electrification. International Journal of Sustainable Energy, 30(4), 212–222.Google Scholar
- 36.Han, G. D., Choi, H. J., Bae, K., & Shim, J. H. (2014). Evaluation of batteries for wind-hybrid systems in South Korean islands. International Journal of Precision Engineering and Manufacturing, 15(4), 761–768.Google Scholar
- 37.Makhija, S. P., & Dubey, S. (2016). Techno-economic analysis of standalone hybrid energy systems to run auxiliaries of a cement plant located in Jamul, Chhattisgarh, India. Environ. Prog. Sust. Energ., 35(1), 221–229.Google Scholar
- 38.Ataei, A., Biglari, M., Nedaei, M., Assareh, E., Choi, J. K., Yoo, C., et al. (2015). Techno-economic feasibility study of autonomous hybrid wind and solar power systems for rural areas in Iran, A case study in Moheydar village. Environmental Progress and Sustainable Energy, 34(5), 1521–1527.Google Scholar
- 39.Olatomiwa, L., Mekhilef, S., Huda, A., & Ohunakin, O. S. (2015). Economic evaluation of hybrid energy systems for rural electrification in six geo-political zones of Nigeria. Renewable Energy, 83, 435–446.Google Scholar
- 40.United States National Renewable Energy Laboratory’s (NREL) HOMER Software, “Brochure of HOMER software”. https://www.nrel.gov/docs/fy04osti/35406.pdf. Accessed Aug 2017.
- 41.Brochure of V80-2.0 MW. https://www.ledsjovind.se/tolvmanstegen/Vestas%20V90-2MW.pdf. Accessed Aug 2017.
- 42.Lifecycle Assessment of a V80-2.0 MW onshore wind turbine. https://static1.squarespace.com/static/5394a3cbe4b032d797fe179c/t/569902661f4039a738f34984/1452868200531/Vestas+v80+2MW+brochure.pdf. Accessed Aug 2017.
- 43.POSCO Annual Report 2008. http://www.posco.com/homepage/docs/eng5/dn/invest/archive/POSCO_2008_AR.pdf. Accessed Aug 2017.
- 44.Korea Power Exchange. Inland System Marginal Price (SMP). http://www.kpx.or.kr/www/contents.do?key=225. Accessed Aug 2017.
- 45.Nelson, V. (2013). Wind energy: Renewable energy and the environment (2nd ed.). Boca Raton: CRC Press.Google Scholar
- 46.Ghosh, T. K., & Prelas, M. A. (2011). Energy resources and systems: Volume 2: Renewable resources. Berlin: Springer.Google Scholar
- 47.Rolls Battery Bank—24 Rolls 6 V 428Ah S550. http://www.wholesalesolar.com/products.folder/battery-folder/Surretterolls.html. Accessed Aug 2017.
- 48.Choi, H. J., Han, G. D., Min, J. Y., Bae, K., & Shim, J. H. (2013). Economic feasibility of a PV system for grid-connected semiconductor facilities in South Korea. International Journal of Precision Engineering and Manufacturing, 14(11), 2033–2041.Google Scholar
- 49.The Bank of Korea. Monetary Policy Framework. http://www.bok.or.kr/broadcast.action?menuNaviId=1899. Accessed Aug 2017.
- 50.Park, J. Y., Lim, J. H., and Park, K. J. (2013) Influence of the carbon tax in South Korea. CEO report., KEPCO Economic Management Research Institute, Vol. 13, No. 29Google Scholar
- 51.Rubin, J. D. (1996). A model of intertemporal emission trading, banking, and borrowing. Journal of Environmental Economics and Management, 31(3), 269–286.zbMATHGoogle Scholar
- 52.Bloomberg New Energy Fianance (2013) South Korea’s emissions trading scheme. http://bnef.com/WhitePapers/download/318. Accessed Feb 2019.