Advertisement

Numerical Simulation of Prismatic Lithium-Ion Battery Life Cycles Under a Wide Range of Temperature

  • Hwabhin Kwon
  • Heesung ParkEmail author
Regular Paper
  • 34 Downloads

Abstract

The thermo-electrochemical characteristics of prismatic lithium-ion batteries is numerically simulated to quantify the degradation and thermal runaway at wide temperature range from − 40 to 80 °C and 150 °C. The numerical simulation describes the effect of temperature on the cell voltage, overpotential and heat generation during charge/discharge process. It is found that the subzero temperature significantly degrades the charge and discharge efficiencies due to high overpotentials while the efficiencies remain constant above 20 °C. Nonetheless, considerable decrease of energy storage capacity is expected above 40 °C. The battery can retain 10% of the nominal energy storage capacity after 1000 charge–discharge cycles when it operates under 80 °C. In addition, thermal runaway also numerically simulated by assuming the accidental temperature of 150 °C. The high temperature causes excessive heat generation during charge/discharge cycles and vice versa. The resulting battery temperature rises to 245 °C which exceeds melting-down temperature of the battery materials to cause combustion or explosion. The thermal behavior of the lithium-ion battery simulated in the study can serve as a guidance for advanced thermal management and strategy.

Keywords

Numerical simulation Lithium-ion battery Operating temperature Thermal runaway Thermo-electrochemical analysis 

List of Symbols

A

Area, m2

\({\text{C}}\)

Lithium ion concentration, mol/m

cp

Specific heat at constant pressure, J/kg K

\({\text{D}}\)

Diffusion coefficient of the particle

DOD

Depth of discharge

\({\text{F}}\)

Faraday’s constant, 96,487 C/mol

\({\text{F}}\)

Molar activity coefficient of the electrolyte

I

Current at the current collector, A

i0

Exchange current density, A/m2

iOS

Exchange current density for side reactions, A/m2

\({\text{J}}\)

Pore wall flux of lithium ions, mol/m2 s

JS

Local current density by side reactions, A/m3

J

Reaction current density, A/m2

K

Electrochemical reaction rate constant, S/m

kt

Thermal conductivity, W/m K

M

Molecular weight, mol/kg

\({\text{Q}}\)

Heat source, W/m3

\({\text{R}}\)

Gas constant, 8.3145 J mol

\({\text{R}}_{\text{f}}\)

Film resistance at the electrode–electrolyte interface, Ω m2

\({\text{R}}_{\text{P}}\)

Resistance of film products, Ω m2

\({\text{R}}\)

Radius, m

\({\text{SOC}}\)

State of charge

\({\text{T}}\)

Temperature, K

t

Time, s

\({\text{t}}_{ + }\)

Transport number, 0.363

\({\text{U}}\)

Overpotential, V

Greek Symbols

\(\alpha\)

Transfer coefficient

\(\gamma\)

Bruggeman coefficient

\(\delta\)

Film thickness, m

\(\varepsilon\)

Porosity factor

\(\eta\)

Overpotential for the intercalation reaction, V

\(\eta_{s}\)

Overpotential for side reaction, V

\(\kappa\)

Electrolyte conductivity, S/m

ξ

Efficiency

\(\phi\)

Electrical potential, V

\(\emptyset_{s, film}\)

Electrical potential drop over film, V

\(\rho\)

Density kg/m3

\(\sigma\)

Electronic conductivity, S/m

Subscripts and Superscripts

0

Initial

a

Anode

c

Cathode

cell

Battery cell

e

Electrolyte

eff

Effective value

eq

Equilibrium

h

Decomposition heat

irr

Irreversible

loc

Location

l

Liquid

n

Negative

max

Maximum

ohm

Ohmic resistance

OS

Side reaction

P

Product formed by side reactions

p

Positive

ref

Reference value

rev

Reversible

s

Solid

surf

Surface

T

Total

N

Cycle number

Notes

Acknowledgements

This work was supported by the National Research Foundation of Korea grant funded by the Korea government (2018R1A5A6075959) and was also supported by the National Research Foundation of Korea grant funded by the Korea government (No. NRF-2017M1A3A3A02016566).

References

  1. 1.
    Scrosati, B., & Garche, J. (2010). Lithium batteries: Status, prospects and future. Journal of Power Sources, 195(9), 2419–2430.CrossRefGoogle Scholar
  2. 2.
    Lee, J., Yim, C., Lee, D., & Park, S. (2017). Manufacturing and characterization of physically modified aluminum anodes based air battery with electrolyte circulation. International Journal of Precision Engineering and Manufacturing-Green Technology, 4(1), 53–57.CrossRefGoogle Scholar
  3. 3.
    Lee, H., Jeong, J., Park, Y., & Cha, S. (2017). Energy management strategy of hybrid electric vehicle using battery state of charge trajectory information. International Journal of Precision Engineering and Manufacturing-Green Technology, 4(1), 79–86.CrossRefGoogle Scholar
  4. 4.
    Bhandari, B., Lee, K.-T., Chu, W.-S., Lee, C. S., Song, C.-K., Bhandari, P., et al. (2014). Socio-economic impact of renewable energy-based power system in mountainous villages of Nepal. International Journal of Precision Engineering and Manufacturing-Green Technology, 4(1), 37–44.CrossRefGoogle Scholar
  5. 5.
    Zheng, C., & Cha, S. W. (2017). Real-time application of Pontryagin’s Minimum Principle to fuel cell hybrid buses based on driving characteristics of buses. International Journal of Precision Engineering and Manufacturing-Green Technology, 4(2), 199–209.CrossRefGoogle Scholar
  6. 6.
    Yi, H. S., Jeong, J. B., Cha, S. W., & Zheng, C.H. (2018) Optimal component sizing of fuel cell-battery excavator based on workload. International Journal of Precision Engineering and Manufacturing-Green Technology, 5(1), 103–110CrossRefGoogle Scholar
  7. 7.
    Petri, R., Giebel, T., Zhang, B., Schunemann, J., & Herrmann, C. (2015). Material cost model for innovative Li-ion battery cells in electric vehicle applications. International Journal of Precision Engineering and Manufacturing-Green Technology, 2(3), 263–268.CrossRefGoogle Scholar
  8. 8.
    Hhandari, B., Poudel, S., Lee, K., & Ahn, S. (2014). Mathematical modeling of hybrid renewable energy system: A review on small hydro-solar-wind power generation. International Journal of Precision Engineering and Manufacturing-Green Technology, 1(2), 157–173.CrossRefGoogle Scholar
  9. 9.
    Kwon, O., Kim, P., & Yoon, Y. (2017). Reduction of control signal overhead for electric vehicle charging operation in smart grid system. International Journal of Precision Engineering and Manufacturing-Green Technology, 4(2), 191–197.CrossRefGoogle Scholar
  10. 10.
    Zhang, S. S., Xu, K., & Jow, T. R. (2004). Electrochemical impedance study on the low temperature of Li-ion batteries. Electrochimica Acta, 49(7), 1057–1061.CrossRefGoogle Scholar
  11. 11.
    Cai, L., & White, R. (2011). Mathematical modeling of a lithium ion battery with thermal effects in COMSOL Inc. multiphysics (MP) software. Journal of Power Sources, 196(14), 5985–5989.CrossRefGoogle Scholar
  12. 12.
    Jeon, D. H., & Baek, S. M. (2011). Thermal modeling of cylindrical lithium ion battery during discharge cycle. Energy Conversion and Management, 52(8–9), 2973–2981.CrossRefGoogle Scholar
  13. 13.
    Panchal, S., Dincer, I., Agelin-Chaab, M., Fraser, M., & Fowler, M. (2016). Thermal modelling and validation of temperature distributions in a prismatic lithium-ion battery at different discharge rates and varying boundary conditions. Applied Thermal Engineering, 96, 190–199.CrossRefGoogle Scholar
  14. 14.
    Uonghuang, Y., Lip, H. S., Yixiang, S., & Andrew, A. (2015). Numerical analyses on optimizing a heat pipe thermal management system for lithium-ion batteries during fast charging. Applied Thermal Engineering, 86, 281–291.CrossRefGoogle Scholar
  15. 15.
    Nandy, P., Bambang, A., & Rangga, A. P. (2016). Experimental investigation on performance of lithium-ion battery thermal management system using flat plate loop heat pipe for electric vehicle application. Applied Thermal Engineering, 99, 784–789.CrossRefGoogle Scholar
  16. 16.
    Zhao, J., Rao, Z., & Li, Y. (2015). Thermal performance of mini-channel liquid cooled cylinder based battery thermal management for cylindrical lithium-ion power battery. Energy Conversion and Management, 103, 157–165.CrossRefGoogle Scholar
  17. 17.
    Yang, X. H., Tan, S. C., & Liu, J. (2016). Thermal management of Li-ion battery with liquid metal. Energy Conversion and Management, 117, 577–585.CrossRefGoogle Scholar
  18. 18.
    Jiateng, Z., Zhonghao, R., Yutao, H., Xinjian, L., & Yimin, L. (2015). Thermal management of cylindrical power battery module for extending the life of new energy electric vehicles. Applied Thermal Engineering, 85, 33–43.CrossRefGoogle Scholar
  19. 19.
    Kim, J., & Lee, C. (2015). Co-simulation approach for analyzing electric-thermal interaction phenomena in lithium-ion battery. International Journal of Precision Engineering and Manufacturing-Green Technology, 2(3), 255–262.CrossRefGoogle Scholar
  20. 20.
    David, L., & Thomas, R. B. (2002). Handbook of batteries (3rd ed.). New York: McGraw-Hill. (chapter 35).Google Scholar
  21. 21.
    Matsumoto, K., Endo, T., Katsuda, K., & Yamada, K. (2012). Synthesis of polycarbosilanes having a five-membered cyclic carbonate structure and their application to prepare gel polymer electrolytes for lithium ion batteries. Journal of Polymer Science Part A: Polymer Chemistry, 24, 5161–5169.CrossRefGoogle Scholar
  22. 22.
    Mohammad, H., Kurt, M., & Alireza, D. (2015). On uncertainty quantification of lithium-ion batteries: Application to an LiC6/LiCoO2 LIPF cell. Journal of Power Sources, 300, 507–524.CrossRefGoogle Scholar
  23. 23.
    Jiangong, Z., Zechang, S., Xuezhe, W., Haifeng, D., & Li, S. (2013) Preliminary Study of a Distributed Thermal Model for a LFP Battery in COMSOL Inc. Multiphysics (MP) Software Vehicle Power and Propulsion Conference (VPPC) 2013, 3623–3632.Google Scholar
  24. 24.
    Doyle, M., Fuller, T. F., & Newman, J. (1993). Modeling of galvanostatic charge and discharge of the lithium/polymer/insertion cell. Journal of the Electrochemical Society, 140(6), 1526–1533.CrossRefGoogle Scholar
  25. 25.
    Doyle, M., & Newman, J. (1996). Comparison of modeling predictions with experimental data from plastic lithium ion cells. Journal of the Electrochemical Society, 143(6), 1890–1903.CrossRefGoogle Scholar
  26. 26.
    Fei, F., Rengui, L., & Chunbo, Z. (2014). A combined state of charge estimation method for lithium-ion batteries used in a wide ambient temperature range. Energies, 7, 3004–3032.CrossRefGoogle Scholar
  27. 27.
    Ramadass, P., Haran, B., White, R., & Popov, B. N. (2013). Mathematical modeling of the capacity fade of Li-ion cells. Journal of Power Sources123(2), 230–240.CrossRefGoogle Scholar
  28. 28.
    Ramadass, P., Haran, B., Gomadam, P. M., White, R. E., & Popov, B. N. (2004). Development of first principles capacity fade model for Li-ion cells. Journal of the Electrochemical Society151, A196–A203.Google Scholar
  29. 29.
    Onda, K., Ohshima, T., Nakayama, M., Fukuda, K., & Araki, T. (2006). Thermal behavior of small lithium-ion battery during rapid charge and discharge cycles. Journal of Power Sources158(1), 535–542.Google Scholar
  30. 30.
    Zhu, C., Li, X., Song, L., & Xiang, L. (2013). Development of a theoretically based thermal model for lithium ion battery pack. Journal of Power Sources223, 155–164.Google Scholar
  31. 31.
    Yamaki, J. I., Shinjo, Y., Doi, T., Okada, S., & Ogumi, Z. (2015). “The rate equation of decomposition for electrolytes with LiPF6 in Li-ion cells at elevated temperatures. Journal of the Electrochemical Society162(4), A520–A530.Google Scholar
  32. 32.
    Han, H. B., Zhou, S. S., Zhang, D. J., Feng, S. W., Li, F. F., Liu, K., et al. (2011). Lithium bis (fluorosulfonyl) imide (LiFSI) as conducting salt for nonaqueous liquid electrolytes for lithium-ion batteries: physicochemical and electrochemical properties. Journal of Power Sources196(7), 3623–3632.Google Scholar

Copyright information

© Korean Society for Precision Engineering 2019

Authors and Affiliations

  1. 1.Graduate School of Mechanical EngineeringChangwon National UniversityChangwonRepublic of Korea
  2. 2.Department of Mechanical EngineeringChangwon National UniversityChangwonRepublic of Korea

Personalised recommendations