Advertisement

3D Printing of Bioinspired Structural Materials with Fibers Induced by Doctor Blading Process

  • Luquan Ren
  • Bingqian Li
  • Zhengyi Song
  • Qingping LiuEmail author
  • Lei RenEmail author
  • Xueli Zhou
Regular Paper
  • 67 Downloads

Abstract

Fiber is a crucial element in biological micro-structural materials. Replication of fiber-reinforced composites with analogous architectures of their natural counterparts has caused widespread academic concern. Recent researches indicate 3D printing technology has the potential to produce biomimetic structural materials. The aim of this study is to develop a process to fabricate fiber-reinforced composites with ordered yet spatially tunable fiber arrangement. Specifically, we present a method to align fibers during the 3D printing of fiber-reinforced composites. A modified slurry-based stereolithography process was developed, and the fibers in the fiber–resin mixture were aligned by Shear force produced during the spreading of slurry. We investigated the influence of relative factors on fiber orientation, and two models were used to uncover the internal mechanism. By controlling the speed and the direction of the moving blade, the patterns that fibers were arranged can be freely programmed. Therefore, we have extracted bioinspired sinusoidal and zigzag design motifs to analyze their mechanical properties compared with non-bioinspired motifs. The proposed method is relatively material agnostic, more efficient and more facile. It thus provides a promising route to fabricate fiber-reinforced composites, and has potential to be adopted in biological structures researches and industrial applications.

Keywords

3D printing Bio-inspired structure materials Stereolithography Fiber arrangement Doctor blading 

Notes

Acknowledgements

This research was supported by National Key R&D Program of China (2018YFB1105100), the Key Scientific and Technological Project of Jilin Province (No. 20170204061GX) and The Provincial Academic Joint Construction Project of Jilin Province (No. SXGJQY2017-1).

References

  1. 1.
    Wegst, U. G., Bai, H., Saiz, E., Tomsia, A. P., & Ritchie, R. O. (2015). Bioinspired structural materials. Nature Materials, 14(1), 23–36.CrossRefGoogle Scholar
  2. 2.
    Naleway, S. E., Porter, M. M., Mckittrick, J., & Meyers, M. A. (2015). Structural design elements in biological materials: Application to bioinspiration. Advanced Materials, 27(37), 5455–5476.CrossRefGoogle Scholar
  3. 3.
    Grunenfelder, L. K., Suksangpanya, N., Salinas, C., Milliron, G., Yaraghi, N., Herrera, S., et al. (2014). Bio-inspired impact-resistant composites. Acta Biomaterialia, 10(9), 3997–4008.CrossRefGoogle Scholar
  4. 4.
    Kim, J. H., Shim, B. S., Kim, H. S., Lee, Y. J., Min, S. K., Jang, D., et al. (2015). Review of nanocellulose for sustainable future materials. International Journal of Precision Engineering and Manufacturing-Green Technology, 2(2), 197–213.CrossRefGoogle Scholar
  5. 5.
    Weaver, J. C., Milliron, G. W., Miserez, A., Evans-Lutterodt, K., Herrera, S., Gallana, I., et al. (2012). The stomatopod dactyl club: A formidable damage-tolerant biological hammer. Science, 336(6086), 1275.CrossRefGoogle Scholar
  6. 6.
    Tanner, K. E. (2012). Small but extremely tough. Science, 336(6086), 1237–1238.CrossRefGoogle Scholar
  7. 7.
    Amini, S., Tadayon, M., Idapalapati, S., & Miserez, A. (2015). The role of Quasi-plasticity in the extreme contact damage tolerance of the stomatopod dactyl club. Nature Materials, 14(9), 943.CrossRefGoogle Scholar
  8. 8.
    Amini, S., Masic, A., Bertinetti, L., Teguh, J. S., Herrin, J. S., Zhu, X., et al. (2014). Textured fluorapatite bonded to calcium sulphate strengthen stomatopod raptorial appendages. Nature Communications, 5(1), 3187.CrossRefGoogle Scholar
  9. 9.
    Patek, S. N., Korff, W. L., & Caldwell, R. L. (2004). Biomechanics: Deadly strike mechanism of a mantis shrimp. Nature, 428(6985), 819.CrossRefGoogle Scholar
  10. 10.
    Lim, Y., Park, J., & Park, K. (2018). Automatic design of 3D conformal lightweight structures based on a tetrahedral mesh. International Journal of Precision Engineering and Manufacturing-Green Technology, 5(4), 499–506.CrossRefGoogle Scholar
  11. 11.
    Martin, J. J., Fiore, B. E., & Erb, R. M. (2015). Designing bioinspired composite reinforcement architectures via 3D magnetic printing. Nature Communications, 6, 8641.CrossRefGoogle Scholar
  12. 12.
    Yang, Y., Chen, Z., Song, X., Zhang, Z., Zhang, J., Shung, K. K., et al. (2017). Biomimetic anisotropic reinforcement architectures by electrically assisted nanocomposite 3D printing. Advanced Materials, 29, 1605750.CrossRefGoogle Scholar
  13. 13.
    Collino, R. R., Ray, T. R., Fleming, R. C., Sasaki, C. H., Haj-Hariri, H., & Begley, M. R. (2015). Acoustic field controlled patterning and assembly of anisotropic particles. Extreme Mechanics Letters, 5, 37–46.CrossRefGoogle Scholar
  14. 14.
    Walther, A., Bjurhager, I., Malho, J. M., Pere, J., Ruokolainen, J., Berglund, L. A., et al. (2010). Large-area, lightweight and thick biomimetic composites with superior material properties via fast, economic, and green pathways. Nano Letters, 10(8), 2742–2748.CrossRefGoogle Scholar
  15. 15.
    Mirkhalaf, M., & Barthelat, F. (2016). Nacre-like materials using a simple doctor blading technique: Fabrication, testing and modeling. Journal of the Mechanical Behavior of Biomedical Materials, 56, 23–33.CrossRefGoogle Scholar
  16. 16.
    Christ, S., Schnabel, M., Vorndran, E., Groll, J., & Gbureck, U. (2015). Fiber reinforcement during 3D printing. Materials Letters, 139, 165–168.CrossRefGoogle Scholar
  17. 17.
    Yaraghi, N. A., Guarín Zapata, N., Grunenfelder, L. K., Hintsala, E., Bhowmick, S., Hiller, J. M., et al. (2016). A sinusoidally architected helicoidal biocomposite. Advanced Materials, 28(32), 6835–6844.CrossRefGoogle Scholar
  18. 18.
    Tsai, P. J., Ghosh, S., Wu, P., & Puri, I. K. (2016). Tailoring material stiffness by filler particle organization. ACS Applied Materials & Interfaces, 8(41), 27449–27453.CrossRefGoogle Scholar
  19. 19.
    Mahajan, C., Cormier, D. (2015). 3D printing of carbon fiber composites with preferentially aligned fibers. In IIE Annual Conference Proceedings Institute of Industrial Engineers, Inc. (IIE)Google Scholar
  20. 20.
    Shah, A. U. R., Prabhakar, M. N., & Song, J. (2017). Current advances in the fire retardancy of natural fiber and bio-based composites—A review. International Journal of Precision Engineering and Manufacturing-Green Technology, 4(2), 247–262.CrossRefGoogle Scholar
  21. 21.
    Jeffery, G. B. (1922). The motion of ellipsoidal particles immersed in a viscous fluid. Proceedings of the Royal Society A, 102(715), 161–179.CrossRefzbMATHGoogle Scholar
  22. 22.
    Moses, K. B., Advani, S. G., & Reinhardt, A. (2001). Investigation of fiber motion near solid boundaries in simple shear flow. Rheologica Acta, 40(3), 296–306.CrossRefGoogle Scholar
  23. 23.
    Ranganathan, S., & Advani, S. G. (1991). Fiber–fiber interactions in homogeneous flows of nondilute suspensions. Journal of Rheology, 35(35), 1499–1522.CrossRefGoogle Scholar
  24. 24.
    Guell, D., & Bénard, A. (1997). Flow-induced alignment in composite materials: Current applications and future prospects. In Flow-Induced Alignment in Composite Materials (pp. 1–42).Google Scholar
  25. 25.
    Cox, R. G. (2006). The motion of long slender bodies in a viscous fluid. Part 1. General theory. Journal of Fluid Mechanics, 45(4), 625–657.MathSciNetCrossRefGoogle Scholar
  26. 26.
    Kim, J. W., & Lee, D. G. (2014). Study on the fiber orientation during compression molding of reinforced thermoplastic composites. International Journal of Precision Engineering and Manufacturing-Green Technology, 1(4), 335–339.MathSciNetCrossRefGoogle Scholar
  27. 27.
    Studart, A. R. (2013). Biological and bioinspired composites with spatially tunable heterogeneous architectures. Advanced Functional Materials, 23(36), 4423–4436.CrossRefGoogle Scholar
  28. 28.
    Liu, Z., Zhu, Y., Jiao, D., Weng, Z., Zhang, Z., & Ritchie, R. O. (2016). Enhanced protective role in materials with gradient structural orientations: Lessons from nature. Acta Biomaterialia, 44, 31–40.CrossRefGoogle Scholar
  29. 29.
    Siqueira, G., Kokkinis, D., Libanori, R., Hausmann, M. K., Gladman, A. S., Neels, A., et al. (2017). Cellulose nanocrystal inks for 3D printing of textured cellular architectures. Advanced Functional Materials, 27(12), 1604619.CrossRefGoogle Scholar
  30. 30.
    Le, H. F., Bouville, F., Niebel, T. P., & Studart, A. R. (2015). Magnetically assisted slip casting of bioinspired heterogeneous composites. Nature Materials, 14(11), 1172–1179.CrossRefGoogle Scholar
  31. 31.
    Neagu, R. C., Gamstedt, E. K., & Lindström, M. (2005). Influence of wood-fibre hygroexpansion on the dimensional instability of fibre mats and composites. Composites Part A Applied Science and Manufacturing, 36(6), 772–788.CrossRefGoogle Scholar
  32. 32.
    Carman, G. P., & Reifsnider, K. L. (1992). Micromechanics of short-fiber composites. Composites Science and Technology, 43(2), 137–146.CrossRefGoogle Scholar
  33. 33.
    Omidi, M., Hossein, R. D. T., Milani, A. S., Seethaler, R. J., & Arasteh, R. (2010). Prediction of the mechanical characteristics of multi-walled carbon nanotube/epoxy composites using a new form of the rule of mixtures. Carbon, 48(11), 3218–3228.CrossRefGoogle Scholar
  34. 34.
    Martone, A., Faiella, G., Antonucci, V., Giordano, M., & Zarrelli, M. (2011). The effect of the aspect ratio of carbon nanotubes on their effective reinforcement modulus in an epoxy matrix. Composites Science and Technology, 71(8), 1117–1123.CrossRefGoogle Scholar
  35. 35.
    Agarwal, B. D., & Broutman, L. J. (1980) Analysis and performance of fiber composites. Journal of Applied Mechanics, 48(1), 213.CrossRefGoogle Scholar
  36. 36.
    Allred, R. E., & Schuster, D. M. (1973). The impact toughness of discontinuous boron-reinforced epoxy composites. Journal of Materials Science, 8(2), 245–250.CrossRefGoogle Scholar
  37. 37.
    Cottrell, A. H. (1964). Strong solids. Proceedings of the Royal Society of London, 282(1388), 2–9.Google Scholar

Copyright information

© Korean Society for Precision Engineering 2019

Authors and Affiliations

  1. 1.Key Laboratory of Bionic Engineering (Ministry of Education)Jilin UniversityChangchunChina
  2. 2.School of Mechanical, Aerospace and Civil EngineeringUniversity of ManchesterManchesterUK

Personalised recommendations