A Review on Hierarchical Origami and Kirigami Structure for Engineering Applications

  • Jung Jae Park
  • Phillip Won
  • Seung Hwan KoEmail author
Review Paper


Origami and kirigami originally serving as the ancient papercraft techniques also provide the way of developing functional hierarchical structures for various engineering applications, for example, stretchable energy devices, wearable sensors, and self-folding scaffolds with tissue engineering, etc. The techniques based on origami/kirigami concept involve folding and cutting of substrates to provide a wide range of applications in different length scale from meter to micro/nanometer size. This simple but unique technique realizes facile and easily accessible modulation of material for mechanical, electrical, and optical properties. Furthermore, development of various origami/kirigami fabrication processes in previous researches has a vast range of material choices, from familiar materials like paper, fabric and metal sheets to advanced materials such as 2D materials and nanocomposites, by introducing computer-aided cutting, lithography/etching and direct-printing process. The modulated characteristics, as exemplified by reconfigurability, ultra-stretchability, and electrical reliability, empower wide fields of researchers to construct functional structures for diverse engineering applications. In this paper, we will discuss on the background of origami/kirigami structures, then introduce fabrication techniques and characterization of the structures and review a wide field of engineering applications like energy harvesting/storage, bioengineering, and healthcare devices for unconventional applications.


Origami Kirigami Hierarchical structure Stretchable electronics Reconfigurable structures 



This work is supported by the National Research Foundation of Korea (NRF) Grant funded through Basic Science Research Program (2017R1A2B3005706, NRF-2016R1A5A1938472) and Institute of Engineering Research at Seoul National University.


  1. 1.
    Thesiya, D., Srinivas, A., & Shukla, P. (2015). A novel lateral deployment mechanism for segmented mirror/solar panel of space telescope. Journal of Astronomical Instrumentation, 4(03n04), 1550006.Google Scholar
  2. 2.
    Gruber, P., Häuplik, S., Imhof, B., et al. (2007). Deployable structures for a human lunar base. Acta Astronautica, 61(1–6), 484–495.Google Scholar
  3. 3.
    Puig, L., Barton, A., & Rando, N. (2010). A review on large deployable structures for astrophysics missions. Acta Astronautica, 67(1–2), 12–26.Google Scholar
  4. 4.
    Lang, R. J. (2004). Origami: Complexity in creases (again). Engineering and Science, 67(1), 5–19.Google Scholar
  5. 5.
    Lamoureux, A., Lee, K., Shlian, M., et al. (2015). Dynamic kirigami structures for integrated solar tracking. Nature Communications, 6, 8092.Google Scholar
  6. 6.
    Tang, R., Huang, H., Tu, H., et al. (2014). Origami-enabled deformable silicon solar cells. Applied Physics Letters, 104(8), 083501.Google Scholar
  7. 7.
    Guo, X., Li, H., Ahn, B. Y., et al. (2009). Two- and three-dimensional folding of thin film single-crystalline silicon for photovoltaic power applications. Proceedings of the National Academy of Sciences of the United States of America, 106(48), 20149–20154.Google Scholar
  8. 8.
    Lv, Z., Luo, Y., Tang, Y., et al. (2018). Editable supercapacitors with customizable stretchability based on mechanically strengthened ultralong MnO2 nanowire composite. Advanced Materials, 30(2), 1704531.Google Scholar
  9. 9.
    Song, Z., Wang, X., Lv, C., et al. (2015). Kirigami-based stretchable lithium-ion batteries. Scientific Reports, 5, 10988.Google Scholar
  10. 10.
    Song, Z., Ma, T., Tang, R., et al. (2014). Origami lithium-ion batteries. Nature Communications, 5, 3140.Google Scholar
  11. 11.
    Jamal, M., Bassik, N., Cho, J.-H., et al. (2010). Directed growth of fibroblasts into three dimensional micropatterned geometries via self-assembling scaffolds. Biomaterials, 31(7), 1683–1690.Google Scholar
  12. 12.
    Randall, C. L., Kalinin, Y. V., Jamal, M., et al. (2011). Three-dimensional microwell arrays for cell culture. Lab On a Chip, 11(1), 127–131.Google Scholar
  13. 13.
    Froeter, P., Huang, Y., Cangellaris, O. V., et al. (2014). Toward intelligent synthetic neural circuits: Directing and accelerating neuron cell growth by self-rolled-up silicon nitride microtube array. ACS Nano, 8(11), 11108–11117.Google Scholar
  14. 14.
    Schenk, M., & Guest, S. D. (2013). Geometry of Miura-folded metamaterials. Proceedings of the National Academy of Sciences of the United States of America, 110(9), 3276–3281.Google Scholar
  15. 15.
    Jang, N. S., Kim, K. H., Ha, S. H., et al. (2017). Simple approach to high-performance stretchable heaters based on kirigami patterning of conductive paper for wearable thermotherapy applications. ACS Applied Materials and Interfaces, 9(23), 19612–19621.Google Scholar
  16. 16.
    Ge, L., Wang, S., Song, X., et al. (2012). 3D origami-based multifunction-integrated immunodevice: Low-cost and multiplexed sandwich chemiluminescence immunoassay on microfluidic paper-based analytical device. Lab On a Chip, 12(17), 3150–3158.Google Scholar
  17. 17.
    Hong, L., Yu, X., Yi, L., et al. (2012). Aptamer-based origami paper analytical device for electrochemical detection of adenosine. Angewandte Chemie, 124(28), 7031–7034.Google Scholar
  18. 18.
    Lee, H., & Choi, S. (2015). An origami paper-based bacteria-powered battery. Nano Energy, 15, 549–557.Google Scholar
  19. 19.
    Yang, P. K., Lin, Z. H., Pradel, K. C., et al. (2015). Paper-based origami triboelectric nanogenerators and self-powered pressure sensors. ACS Nano, 9(1), 901–907.Google Scholar
  20. 20.
    Wu, C., Wang, X., Lin, L., et al. (2016). Paper-based triboelectric nanogenerators made of stretchable interlocking kirigami patterns. ACS Nano, 10(4), 4652–4659.Google Scholar
  21. 21.
    Hou, Y., Neville, R., Scarpa, F., et al. (2014). Graded conventional-auxetic Kirigami sandwich structures: Flatwise compression and edgewise loading. Composites Part B Engineering, 59, 33–42.Google Scholar
  22. 22.
    Blees, M. K., Barnard, A. W., Rose, P. A., et al. (2015). Graphene kirigami. Nature, 524(7564), 204–207.Google Scholar
  23. 23.
    Bassik, N., Stern, G. M., & Gracias, D. H. (2009). Microassembly based on hands free origami with bidirectional curvature. Applied Physics Letters, 95(9), 91901.Google Scholar
  24. 24.
    Gladman, A. S., Matsumoto, E. A., Nuzzo, R. G., et al. (2016). Biomimetic 4D printing. Nature Materials, 15(4), 413–418.Google Scholar
  25. 25.
    Ahn, B. Y., Shoji, D., Hansen, C. J., et al. (2010). Printed origami structures. Advanced Materials, 22(20), 2251–2254.Google Scholar
  26. 26.
    Miura, K. (1969). Proposition of pseudo-cylindrical concave polyhedral shells. Tokyo: Institute of Space and Aeronautical Science, University of Tokyo.Google Scholar
  27. 27.
    Lang, R. J. (2009). Origami 4. Boca Raton: CRC Press.zbMATHGoogle Scholar
  28. 28.
    Wang-Iverson, P., Lang, R. J., & Mark, Y. (2016). Origami 5: Fifth international meeting of origami science, mathematics, and education. Boca Raton: CRC Press.zbMATHGoogle Scholar
  29. 29.
    Shyu, T. C., Damasceno, P. F., Dodd, P. M., et al. (2015). A kirigami approach to engineering elasticity in nanocomposites through patterned defects. Nature Materials, 14(8), 785–789.Google Scholar
  30. 30.
    Cho, Y., Shin, J. H., Costa, A., et al. (2014). Engineering the shape and structure of materials by fractal cut. Proceedings of the National Academy of Sciences of the United States of America, 111(49), 17390–17395.Google Scholar
  31. 31.
    Zhang, Y., Yan, Z., Nan, K., et al. (2015). A mechanically driven form of Kirigami as a route to 3D mesostructures in micro/nanomembranes. Proceedings of the National Academy of Sciences of the United States of America, 112(38), 11757–11764.Google Scholar
  32. 32.
    Zhang, Y., Matsumoto, E. A., Peter, A., et al. (2008). One-step nanoscale assembly of complex structures via harnessing of an elastic instability. Nano Letters, 8(4), 1192–1196.Google Scholar
  33. 33.
    Xu, L., Wang, X., Kim, Y., et al. (2016). Kirigami nanocomposites as wide-angle diffraction gratings. ACS Nano, 10(6), 6156–6162.Google Scholar
  34. 34.
    Na, J. H., Evans, A. A., Bae, J., et al. (2015). Programming reversibly self-folding origami with micropatterned photo-crosslinkable polymer trilayers. Advanced Materials, 27(1), 79–85.Google Scholar
  35. 35.
    Lewis, J. A. (2002). Direct-write assembly of ceramics from colloidal inks. Current Opinion in Solid State and Materials Science, 6(3), 245–250.Google Scholar
  36. 36.
    Smay, J. E., Cesarano, J., & Lewis, J. A. (2002). Colloidal inks for directed assembly of 3-D periodic structures. Langmuir, 18(14), 5429–5437.Google Scholar
  37. 37.
    Li, Q., & Lewis, J. A. (2003). Nanoparticle inks for directed assembly of three-dimensional periodic structures. Advanced Materials, 15(19), 1639–1643.Google Scholar
  38. 38.
    Lewis, J. A., & Gratson, G. M. (2004). Direct writing in three dimensions. Materials Today, 7(7–8), 32–39.Google Scholar
  39. 39.
    Michna, S., Wu, W., & Lewis, J. A. (2005). Concentrated hydroxyapatite inks for direct-write assembly of 3-D periodic scaffolds. Biomaterials, 26(28), 5632–5639.Google Scholar
  40. 40.
    Therriault, D., Shepherd, R. F., White, S. R., et al. (2005). Fugitive inks for direct-write assembly of three-dimensional microvascular networks. Advanced Materials, 17(4), 395–399.Google Scholar
  41. 41.
    Gratson, G. M., García-Santamaría, F., Lousse, V., et al. (2006). Direct-write assembly of three-dimensional photonic crystals: conversion of polymer scaffolds to silicon hollow-woodpile structures. Advanced Materials, 18(4), 461–465.Google Scholar
  42. 42.
    Duoss, E. B., Twardowski, M., & Lewis, J. A. (2007). Sol–gel inks for direct-write assembly of functional oxides. Advanced Materials, 19(21), 3485–3489.Google Scholar
  43. 43.
    Wu, Z. L., Moshe, M., Greener, J., et al. (2013). Three-dimensional shape transformations of hydrogel sheets induced by small-scale modulation of internal stresses. Nature Communications, 4, 1586.Google Scholar
  44. 44.
    Aharoni, H., Sharon, E., & Kupferman, R. (2014). Geometry of thin nematic elastomer sheets. Physical Review Letters, 113(25), 257801.Google Scholar
  45. 45.
    Sawa, Y., Ye, F., Urayama, K., et al. (2011). Shape selection of twist-nematic-elastomer ribbons. Proceedings of the National Academy of Sciences of the United States of America, 108(16), 6364–6368.Google Scholar
  46. 46.
    Dudte, L. H., Vouga, E., Tachi, T., et al. (2016). Programming curvature using origami tessellations. Nature Materials, 15(5), 583.Google Scholar
  47. 47.
    Miura, K. (1985). Method of packaging and deployment of large membranes in space. The Institute of Space and Astronautical Science Report, 618, 1.Google Scholar
  48. 48.
    Lv, C., Krishnaraju, D., Konjevod, G., et al. (2014). Origami based mechanical metamaterials. Scientific Reports, 4, 5979.Google Scholar
  49. 49.
    Cheung, K. C., Tachi, T., Calisch, S., et al. (2014). Origami interleaved tube cellular materials. Smart Materials and Structures, 23(9), 094012.Google Scholar
  50. 50.
    Filipov, E. T., Tachi, T., & Paulino, G. H. (2015). Origami tubes assembled into stiff, yet reconfigurable structures and metamaterials. Proceedings of the National Academy of Sciences of the United States of America, 112(40), 12321–12326.Google Scholar
  51. 51.
    Filipov, E. T., Paulino, G. H., & Tachi, T. (2016). Origami tubes with reconfigurable polygonal cross-sections. Proceedings: Mathematical, Physical and Engineering Sciences, 472(2185), 20150607.MathSciNetzbMATHGoogle Scholar
  52. 52.
    Yasuda, H., & Yang, J. (2015). Reentrant origami-based metamaterials with negative Poisson’s ratio and bistability. Physical Review Letters, 114(18), 185502.Google Scholar
  53. 53.
    Kamrava, S., Mousanezhad, D., Ebrahimi, H., et al. (2017). Origami-based cellular metamaterial with auxetic, bistable, and self-locking properties. Sci Rep, 7, 46046.Google Scholar
  54. 54.
    Eidini, M., & Paulino, G. H. (2015). Unraveling metamaterial properties in zigzag-base folded sheets. Science Advances, 1(8), e1500224.Google Scholar
  55. 55.
    Eidini, M. (2016). Zigzag-base folded sheet cellular mechanical metamaterials. Extreme Mechanics Letters, 6, 96–102.Google Scholar
  56. 56.
    Tachi, T. (2010). Origamizing polyhedral surfaces. IEEE Transactions on Visualization and Computer Graphics, 16(2), 298–311.MathSciNetGoogle Scholar
  57. 57.
    Tachi, T. (2013). Designing freeform origami tessellations by generalizing Resch’s patterns. Journal of Mechanical Design, 135(11), 111006.Google Scholar
  58. 58.
    Qi, Z., Campbell, D. K., & Park, H. S. (2014). Atomistic simulations of tension-induced large deformation and stretchability in graphene kirigami. Physical Review B, 90(24), 245437.Google Scholar
  59. 59.
    Tang, Y., & Yin, J. (2017). Design of cut unit geometry in hierarchical kirigami-based auxetic metamaterials for high stretchability and compressibility. Extreme Mechanics Letters, 12, 77–85.Google Scholar
  60. 60.
    Sussman, D. M., Cho, Y., Castle, T., et al. (2015). Algorithmic lattice kirigami: A route to pluripotent materials. Proceedings of the National Academy of Sciences of the United States of America, 112(24), 7449–7453.Google Scholar
  61. 61.
    Fan, F.-R., Tian, Z.-Q., & Wang, Z. L. (2012). Flexible triboelectric generator. Nano Energy, 1(2), 328–334.Google Scholar
  62. 62.
    Bai, P., Zhu, G., Lin, Z. H., et al. (2013). Integrated multilayered triboelectric nanogenerator for harvesting biomechanical energy from human motions. ACS Nano, 7(4), 3713–3719.Google Scholar
  63. 63.
    Xie, C., Liu, J., Fu, T.-M., et al. (2015). Three-dimensional macroporous nanoelectronic networks as minimally invasive brain probes. Nature Materials, 14(12), 1286.Google Scholar
  64. 64.
    Breger, J. C., Yoon, C., Xiao, R., et al. (2015). Self-folding thermo-magnetically responsive soft microgrippers. ACS Applied Materials and Interfaces, 7(5), 3398–3405.Google Scholar
  65. 65.
    Xi, W., Schmidt, C. K., Sanchez, S., et al. (2014). Rolled-up functionalized nanomembranes as three-dimensional cavities for single cell studies. Nano Letters, 14(8), 4197–4204.Google Scholar
  66. 66.
    Suzuki, T., Mabuchi, K., Takeuchi, S. (2003). A 3D flexible parylene probe array for multichannel neural recording. In Proceedings of the first international IEEE EMBS Conference on Neural engineering (pp. 154–156). IEEE.Google Scholar
  67. 67.
    Gultepe, E., Yamanaka, S., Laflin, K. E., et al. (2013). Biologic tissue sampling with untethered microgrippers. Gastroenterology, 144(4), 691–693.Google Scholar
  68. 68.
    Gultepe, E., Randhawa, J. S., Kadam, S., et al. (2013). Biopsy with thermally-responsive untethered microtools. Advanced Materials, 25(4), 514–519.Google Scholar
  69. 69.
    Malachowski, K., Breger, J., Kwag, H. R., et al. (2014). Stimuli-responsive theragrippers for chemomechanical controlled release. Angewandte Chemie (International ed. in English), 53(31), 8045–8049.Google Scholar
  70. 70.
    Leong, T. G., Randall, C. L., Benson, B. R., et al. (2009). Tetherless thermobiochemically actuated microgrippers. Proceedings of the National Academy of Sciences of the United States of America, 106(3), 703–708.Google Scholar
  71. 71.
    Yim, S., Gultepe, E., Gracias, D. H., et al. (2014). Biopsy using a magnetic capsule endoscope carrying, releasing, and retrieving untethered microgrippers. IEEE Transactions on Biomedical Engineering, 61(2), 513–521.Google Scholar
  72. 72.
    Bassik, N., Brafman, A., Zarafshar, A. M., et al. (2010). Enzymatically triggered actuation of miniaturized tools. Journal of the American Chemical Society, 132(46), 16314–16317.Google Scholar
  73. 73.
    Randall, C. L., Kalinin, Y. V., Jamal, M., et al. (2011). Self-folding immunoprotective cell encapsulation devices. Nanomedicine, 7(6), 686–689.Google Scholar
  74. 74.
    Shim, T. S., Kim, S. H., Heo, C. J., et al. (2012). Controlled origami folding of hydrogel bilayers with sustained reversibility for robust microcarriers. Angewandte Chemie (International ed. in English), 51(6), 1420–1423.Google Scholar
  75. 75.
    Stoychev, G., Puretskiy, N., & Ionov, L. (2011). Self-folding all-polymer thermoresponsive microcapsules. Soft Matter, 7(7), 3277–3279.Google Scholar
  76. 76.
    Azam, A., Laflin, K. E., Jamal, M., et al. (2011). Self-folding micropatterned polymeric containers. Biomedical Microdevices, 13(1), 51–58.Google Scholar
  77. 77.
    Fernandes, R., & Gracias, D. H. (2012). Self-folding polymeric containers for encapsulation and delivery of drugs. Advanced Drug Delivery Reviews, 64(14), 1579–1589.Google Scholar
  78. 78.
    Yamamoto, Y., Harada, S., Yamamoto, D., et al. (2016). Printed multifunctional flexible device with an integrated motion sensor for health care monitoring. Sci Adv, 2(11), e1601473.Google Scholar
  79. 79.
    Yamamoto, D., Nakata, S., Kanao, K., et al. (2017). A planar, multisensing wearable health monitoring device integrated with acceleration, temperature, and electrocardiogram sensors. Advanced Materials Technologies, 2(7), 1700057.Google Scholar
  80. 80.
    Yamamoto, D., Nakata, S., Kanao, K., et al. (2017). All-printed, planar-type multi-functional wearable flexible patch integrated with acceleration, temperature, and ECG sensors. In IEEE 30th International Conference on micro electro mechanical systems (MEMS) (pp. 239–242). IEEE.Google Scholar
  81. 81.
    Guo, Y., Dun, C., Xu, J., et al. (2017). Ultrathin, washable, and large-area graphene papers for personal thermal management. Small, 13(44), 1702645.Google Scholar
  82. 82.
    Xu, S., Yan, Z., Jang, K.-I., et al. (2015). Assembly of micro/nanomaterials into complex, three-dimensional architectures by compressive buckling. Science, 347(6218), 154–159.Google Scholar
  83. 83.
    Cho, J. H., Keung, M. D., Verellen, N., et al. (2011). Nanoscale origami for 3D optics. Small (Weinheim an der Bergstrasse, Germany), 7(14), 1943–1948.Google Scholar
  84. 84.
    Yan, Z., Zhang, F., Liu, F., et al. (2016). Mechanical assembly of complex, 3D mesostructures from releasable multilayers of advanced materials. Science Advances, 2(9), e1601014.Google Scholar
  85. 85.
    Wang, W., Li, C., Rodrigue, H., et al. (2017). Kirigami/origami-based soft deployable reflector for optical beam steering. Advanced Functional Materials, 27(7), 1604214.Google Scholar
  86. 86.
    Nogi, M., Komoda, N., Otsuka, K., et al. (2013). Foldable nanopaper antennas for origami electronics. Nanoscale, 5(10), 4395–4399.Google Scholar
  87. 87.
    Pandey, S., Macias, N., Ciobanu, C., et al. (2016). Assembly of a 3D cellular computer using folded E-blocks. Micromachines, 7(5), 78.Google Scholar
  88. 88.
    Kang, M., & Kang, K.-T. (2018). Flexible 2-layer paper printed circuit board fabricated by inkjet printing for 3-D origami electronics. International Journal of Precision Engineering and Manufacturing-Green Technology, 5(3), 421–426.Google Scholar
  89. 89.
    Martinez, R. V., Fish, C. R., Chen, X., et al. (2012). Elastomeric origami: Programmable paper-elastomer composites as pneumatic actuators. Advanced Functional Materials, 22(7), 1376–1384.Google Scholar
  90. 90.
    Zhang, K., Qiu, C., & Dai, J. S. (2015). Helical kirigami-enabled centimeter-scale worm robot with shape-memory-alloy linear actuators. Journal of Mechanisms and Robotics, 7(2), 021014-10.Google Scholar

Copyright information

© Korean Society for Precision Engineering 2019

Authors and Affiliations

  1. 1.Applied Nano and Thermal Science Lab, Department of Mechanical EngineeringSeoul National UniversitySeoulRepublic of Korea
  2. 2.Institute of Advanced Machinery and Design (SNU-IAMD)Seoul National UniversitySeoulRepublic of Korea

Personalised recommendations